
DifFlow3D: Toward Robust Uncertainty-Aware Scene Flow Estimation with
Iterative Diffusion-Based Refinement

(Supplementary Materials)

Jiuming Liu1, Guangming Wang2, Weicai Ye3, Chaokang Jiang4, Jinru Han1,
Zhe Liu5, Guofeng Zhang3, Dalong Du4, Hesheng Wang1*

1Department of Automation, Shanghai Jiao Tong University 2University of Cambridge
3State Key Lab of CAD & CG, Zhejiang University 4PhiGent Robotics

5 MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University
{liujiuming,wangguangming,liuzhesjtu,wanghesheng}@sjtu.edu.cn

ts20060079a31@cumt.edu.cn maikeyeweicai@gmail.com

1. Overview
The supplementary materials are briefly distributed as fol-
lows:
• we first illustrate the motivation for why we leverage the

diffusion model into the scene flow estimation task in
Section 2.

• we show more model details including the network ar-
chitecture designs in Section 3, datatsets and evaluation
metrics in Section 4.

• Additional experimental results are also presented in Sec-
tion 5 to demonstrate the superiority and universality of
our method.

• Furthermore, quantities of visualization figures are shown
in Section 6.

2. Motivation
Quite a few previous scene flow networks utilize the coarse-
to-fine structure [4, 8, 14, 18] or recurrent iterations [3, 7,
17], which fit in well with the principles of diffusion mod-
els intrinsically since diffusion models progressively dif-
fuse and generate samples step-by-step through a series of
Markov chain. Furthermore, the iterative denoising steps of
the diffusion model can enhance the model’s robustness to
noisy points, as demonstrated in our main manuscript.

Basically, the diffusion model is attributed to the field of
generation models. Recently, an increasing number of re-
searchers have tried to adapt it to deterministic tasks, such
as object detection [1, 5], semantic segmentation [13, 19],
and pose estimation [6, 16, 20]. The powerful ability and
denoising intrinsic of diffusion models boost the advance-
ments in these domains. Inspired by their successes, we
also resort to diffusion models for providing a robust and

*Corresponding Authors.

Algorithm 1 Training Process
Input: timestamp t, ground truth flow residual s0, condition
information C.

1: repeat
2: s0 ∼ q(s0)
3: t ∼ Uniform({1,...,T})
4: Sample the intermediate flow residual st at the times-

tamp t through sampling noise ϵ ∼ N (0, I) in the for-
ward process.

5: Take gradient descent step on
▽θ ∥ s0 −Mθ(st, C, t) ∥

6: until converged

Algorithm 2 Sampling Process
Input: total timestamps T , Gaussian noise sT , condition
information C.
Output: refined scene flow residual s0.

1: sT ∼ N (0, I)
2: for t = T, ..., 1 do
3: z ∼ N (0, I) if t > 1, else z = 0
4: st−1 = 1√

αt
(st − 1−αt√

1−ᾱt
Mθ(st, C, t)) + σtz

5: end for
6: return s0

universal refinement module to further improve the scene
flow estimation accuracy.

1



Module Layer Point number Mθ Iteration MLP width Cin Cout

BGRU 256 - 4 [256,256] 320+320+3 256

FE 256 - - [128,64],[3],[1] 256+256+3 3,1
Scene Flow
Initialization

l = 1 512 GRU 4 [128,128],[3],[1] 128+128+3 64,3,1

l = 2 2048 GRU 4 [64,64],[3],[1] 64+64+3 64,3,1

l = 3 8192 GRU 4 [32,32],[3],[1] 32+32+3 64,3,1

Iterative Diffusion-based
Scene Flow Refinement

Table 1. Detailed network parameters with MSBRN [3] as our baseline. MLP width indicates the number of output channels for each
layer of MLP. Cin and Cout respectively denote the number of input and output channels.

Module Layer type K Sample rate MLP width

All-to-all point gathering 4,256 1 [256,128,128], [256,128]
Shared MLP for FE — 1 [128,128,256] [256,256,512]

FC layer for flow and uncertainty — 1 [3] [1]

Scene Flow
Initialization

Attentive cost volume 4, 6 1 [512,256,256], [512,256]
Mθ — 1 [512,256,256]l = 1

FC layer for flow and uncertainty — 1 [3], [1]

Set upconv 8 4 [256,128,128], [128]
Attentive cost volume 4, 6 1 [256,128,128], [256,128]

Mθ — 1 [256,128,128]l = 2

FC layer for flow and uncertainty — 1 [3], [1]

Set upconv 8 4 [256,128,128], [128]
Attentive cost volume 4, 6 1 [128,64,64], [128,64]

Mθ — 1 [256,128,128]l = 3

FC layer for flow and uncertainty — 1 [3], [1]

Set upconv 8 2 [128,64,64], [64]
Attentive cost volume 4, 6 1 [64,32,32], [64,32]

Mθ — 1 [128,64,64]l = 4

FC layer for flow and uncertainty — 1 [3], [1]

Iterative Diffusion-based
Scene Flow Refinement

Table 2. Detailed network parameters with 3DFlow [14] as our baseline. K points are selected in the K Nearest Neighbors (KNN) of
the all-to-all point gathering layer, set upconv layer, and attentive cost volume layer. MLP width means the number of output channels for
each layer of MLP. FC means fully connected layer.

3. Implementation Details
3.1. Training and Inference Process

Training. Our diffusion model follows the same sampling
and training strategy as in DDIM [12]. Specifically, our
training process can be represented by Algorithm 1. The in-
termediate flow residual st is first sampled from the forward
process by adding a pre-defined noise schedule onto the
flow residual ground truth s0. Then, condition information
C, intermediate flow residual st, and time embedding from
t will all be treated as inputs of the denoising network Mθ.
The optimization objective is designed by narrowing the
distribution between the ground truth flow residual s0 and
predicted one Mθ(st, C, t). Furthermore, we propose a per-
flow corresponding uncertainty estimation within the same
diffusion model. Its training process remains the same as
the scene flow. For better clarity, we omit its description in
the Algorithm 1. Finally, our network employs multi-scale
supervision combining scene flow, scene flow residual, and
uncertainty residual. Their weights λsf , λres, and λun are
set as 1, 1, 1 respectively. For different refinement layers,
our designed loss weights are 0.02, 0.04, 0.08, 0.16. All the

variables are defined as described in the main manuscript.
Sampling. We iteratively generate the flow residuals

from a total Gaussian noise sT as in Algorithm 2. Our
proposed diffusion-based refinement module recovers the
denser flow residuals from coarse to fine. Each layer has
the same sampling process in Algorithm 2.

3.2. Network Architecture Details

Basically, our whole network consists of three components:
feature extraction, scene flow initialization, and iterative
diffusion-based flow refinement. Among these, feature ex-
traction and flow initialization are not our main concerns in
this paper. Instead, we try to investigate whether there ex-
ists a relatively universal method that can refine coarse esti-
mated scene flow for more accurate and robust denser flow
estimation. With the diffusion model, our proposed refine-
ment layer can be adapted to a series of recent SOTA meth-
ods. Here, we show network settings based on two repre-
sentative methods: coarse-to-fine structure based—3DFlow
[14], and the recurrent network based—MSBRN [3]. We
combine the initialization manners in their networks with
our iterative diffusion-based refinement module as follows.



FT3Ds KITTIsMethod
EPE3D↓ Acc3DS↑ Acc3DR↑ Outliers↓ EPE3D↓ Acc3DS↑ Acc3DR↑ Outliers↓ Runtime(ms) Memory (G)

GMSF [21] (NeurIPS2023) 0.0104 0.9891 0.9963 0.0320 0.0272 0.9330 0.9822 0.1316 2305.7 162.3
Ours 0.0114 0.9836 0.9949 0.0350 0.0078 0.9817 0.9924 0.0795 228.3 10.8

Table 3. Comparison with GMSF [21] on the FT3Ds and KITTIs datasets. We compare the performance of our model with the
recent SOTA method–GMSF on both two datasets. GMSF is based on the global matching with transformer architecture. Although their
model has slightly better accuracy when evaluated on the Flyingthings3D dataset, it suffers from dramatically decreasing accuracy when
generalized on the KITTI dataset, and also much lower efficiency. Runtime is evaluated on the same RTX 3090 GPU. Memory indicates
the memory requirement for training. The best results are in bold.

Method Sup. EPE3D↓ Acc3DS↑ Acc3DR↑ Outliers↓

SFGAN [15] Self 0.075 0.4980 0.8117 0.4530
Ours Full 0.008 0.9817 0.9924 0.0795

Table 4. Comparison with SFGAN on the KITTIs dataset. SF-
GAN is a kind of self-supervised GAN-based scene flow estima-
tion method, which is also trained on the FT3Ds dataset.

With the initialization method in MSBRN. MSBRN
[3] proposes a multi-scale bi-directional recurrent network
by combining the GRU with hybrid correlation. We adopt
its flow initialization manner as in Table 1. The flow ini-
tialization mainly consists of two parts: BGRU and Flow
embedding (FE) layers. BGRU is proposed to augment
point features with bi-directional frame association and it-
eratively optimize the state correlations. Then, augmented
point correlation features from BGRU will be the inputs
of the FE layer together with down-sampled point features
from PC1. In Table 1, we list the main network details of
its initialization. After the initialization, our proposed iter-
ative diffusion-based refinement is leveraged to recover the
denser flow residuals. The denoising network is designed
as GRU and iterations of GRU are all set as 3. In each re-
finement layer, we input correlation features, up-sampled
coarse flow features, and up-sampled point features into the
module. After concatenating the time embedding and latent
variables, these features are all processed by the denoising
network. Finally, refined point features, refined scene flow
residual, and uncertainty residual are generated from layer
l and then serve as the inputs of layer l + 1.

With the initialization method in 3DFlow. 3DFlow
[14] designs an all-to-all initial correlation layer with the
backward validation, where its refinement is based on five
components: up-sampled dense flow embedding, flow re-
embedding, point feature from PC1, dense flow, and dense
flow feature. Here, we apply the same flow initialization
method using the all-to-all point gathering module. Then,
all five flow-related features are utilized as condition in-
formation within our diffusion model for guiding the flow
residual generation. Similarly, we will concatenate the con-
dition information, time embedding, and latent variables to-
gether to go through the denoising network as in Table 2.
Finally, a fully connected layer is leveraged to regress the

flow and uncertainty residuals.

4. Datasets and Evaluation Metrics
4.1. Datasets and Data Pre-processing

In this section, we supplement more details about the
datasets and data pre-processing methods used in the main
manuscript.

Datatsets. Following previous works [2, 4, 8, 11, 14,
17], we train our DifFlow3D on synthetic FlyingThings3D
dataset [9]. To demonstrate the generalization ability of our
model, we conduct the evaluation experiments not only on
FlyingThings3D but also on real-world LiDAR scans from
the KITTI [10] dataset. For a fair comparison, we follow
previous works [2, 4, 8, 11, 14, 17] to feed only XYZ co-
ordinates into our network as inputs, and randomly sample
8192 points for both two point cloud frames.

Data pre-processing. Common data processing of the
above two datasets in the scene flow task has two ver-
sions: 1) Data without occlusion. This is proposed by
HPLFlowNet [4], where each point in PC1 has its corre-
sponding point in PC2. 2) Data with occlusion, which is
proposed by FlowNet3D [8]. This version has occluded
points and masks as inputs. Masks indicate invalid points
that have no correspondence in the other frame, which are
also used to compute training loss and evaluation metrics.
For a comprehensive and fair comparison with previous
works, we follow both two data processing versions for
training and testing our model.

4.2. Evaluation Metrics

For a fair comparison with previous scene flow methods, we
evaluate our DifFlow3D on the same evaluation metrics as
[2, 4, 8, 11, 14, 17], including both 3D and 2D metrics.

EPE3D (m): ∥ sf l − sfGT ∥2 indicates the average
end-point-error between the estimated scene flow positions
and ground truth ones. It is commonly used as the most
representative metric in the scene flow estimation task.

Acc3DS: the percentage of points which satisfy EPE3D
< 0.05m or relative error < 5%.

Acc3DR: the percentage of points which satisfy EPE3D
< 0.1m or relative error < 10%.



FT3Ds KITTIsMethod Training
EPE3D↓ Acc3DS↑Acc3DR↑Outliers↓EPE2D↓Acc2D↑EPE3D↓ Acc3DS↑Acc3DR↑Outliers↓EPE2D↓Acc2D↑

PointPWC [18] Complete0.0588 0.7379 0.9276 0.3424 3.2390 0.7994 0.0694 0.7281 0.8884 0.2648 3.0062 0.7673
PointPWC+DSFRComplete0.0476 (↓ 19.0%) 0.8357 0.9557 0.2515 2.5840 0.8607 0.0518 (↓ 25.4%) 0.8314 0.9468 0.2009 2.1435 0.8465

Table 5. The plug-and-play results with the initialization of PointPWC [18] on the FT3Ds and KITTIs dataset. Our Diffusion-based
Scene Flow Refinement (DSFR) can effectively improve the accuracy introduced into PointPWC. The best results are in bold.

Method EPE3D↓ Acc3DS↑ Acc3DR↑ Outliers↓ EPE2D↓ Acc2D↑

Only initialized flow 0.1559 0.0777 0.4462 0.8637 6.2390 0.3759
Predicted flow with one refinement layer 0.0883 0.4071 0.8197 0.5817 4.7682 0.5759
Predicted flow with two refinement layers 0.0274 0.9284 0.9799 0.1356 1.5036 0.9228
Predicted flow with three refinement layers 0.0114 0.9836 0.9949 0.0350 0.6220 0.9824

Table 6. Ablation studies about the layer number of diffusion-based refinement on the FT3Ds dataset.

Iteration EPE3D↓Acc3DS↑Acc3DR↑Outliers↓EPE2D↓Acc2D↑Runtime(ms)

2 0.0339 0.8909 0.9822 0.2476 1.7726 0.9211 152.3
3 0.0178 0.9680 0.9910 0.0767 0.9679 0.9667 212.9
4 0.0114 0.9836 0.9949 0.0350 0.6220 0.9824 228.3
5 0.0113 0.9774 0.9950 0.0345 0.6163 0.9758 335.3
6 0.0157 0.9761 0.9933 0.0693 0.8371 0.9752 395.4

Table 7. Ablation studies about the iteration times in denoising
GRU on the FT3Ds dataset.

Outliers: the percentage of points which satisfy EPE3D
> 0.3m or relative error > 10%.

EPE2D (px): the average 2D end-point-error measured
by projecting back onto the image plane.

Acc2D: the percentage of points which satisfy EPE2D
< 3px or relative error < 5%.

5. Additional Experiments
5.1. More Comparison Results

In this section, we present more comparison results with
recent methods as follows.

Comparison results with GMSF. GMSF [21] proposes
a global matching approach by leveraging the transformer
architecture into scene flow estimation. As in Table 3, al-
though the performance on the synthetic dataset Flyingth-
ings3D has already saturated because of their per-point
dense matching between two frames with cross attention,
the drawbacks are also obvious. On the one hand, their run-
ning time is extremely large due to the quadratic complexity
of transformer to the point number, particularly for all dense
points. Typically, their model is trained on four NVIDIA
A40 GPUs, but our DifFlow3D can be only trained on a
single RTX 3090 GPU with rather competitive accuracy.
On the other hand, their generalization capability is much
worse than ours on the KITTI dataset, partly because dense
global matching can learn less about the universal and un-
derlying rules across different data domains.

Comparison results with SFGAN. Similar to this work,
SFGAN [15] also proposes a scene flow network with an-
other generative model—GAN. They synthesize indistin-

guishable fake point clouds through the adversarial training
of the generator, and discriminate the real points and the
synthesized fake points by the discriminator. Here, we also
compare our diffusion-based method with their GAN-based
one in Table 4. Obviously, our DifFlow3D can outperform
SFGAN by a large margin in terms of EPE3D, Acc3DR,
Acc3DR, and Outliers metrics. Both two networks are
trained on the Flyingthings3D dataset and evaluated on
the KITTI dataset. The difference is that SFGAN is self-
supervised trained on FT3Ds and then finetuned on KITTIs,
but our method is fully-supervised trained on FT3Ds and
evaluated on KITTIs without any fine-tuning. We leave the
self-supervised learning of the diffusion-based refinement
module as our future work.

5.2. Plug-and-play Results on PointPWC

As shown in the main manuscript, our Diffusion-based
Scene Flow Refinement (DSFR) module can serve as a
plug-and-play module into a series of recent methods, sig-
nificantly improving their estimation accuracy. Here, we
also show the results by applying our DSFR module to one
classic learning-based method–PointPWC [18] in Table 5.
Our DSFR can improve the estimation accuracy by 7.3%
on the synthetic Flyingthings3D dataset.

5.3. Ablation studies

In this section, we further conduct ablation studies about
the number of refinement layers, the iteration times in GRU,
and uncertainty threshold settings.

Refinement layer number. We first conduct experi-
ments about different layer numbers of the diffusion-based
refinement in our model. As illustrated in Table 6, with
increasing coarse-to-fine refinement layers, our predicted
scene flow has more EPE3D reduction progressively. How-
ever, more additional refinement layers can not further im-
prove the estimation accuracy but have much larger compu-
tational burdens.

Iteration times of denoising network. We leverage
GRU as our denoising network. Here, we also show how



Method Training EPE3D↓ Acc3DS↑ Acc3DR↑ Outliers↓ EPE2D↓ Acc2D↑

Ours w/o uncertainty Quarter 0.0318 0.9136 0.9769 0.1640 1.7374 0.9158
Ours with uncertainty Quarter 0.0297 0.9207 0.9785 0.1548 1.6344 0.9188
Ours w/o uncertainty Complete 0.0290 0.9296 0.9826 0.1403 1.5458 0.9321
Ours with uncertainty Complete 0.0242 0.9494 0.9860 0.1166 1.3201 0.9459

Table 8. Ablation studies about uncertainty (with the flow initialization based on 3DFlow) on the FT3Ds dataset.

EPE3D (m)
Eend

0.05 0.03 0.02 0.01

E
s
ta

r
t 0.5 0.024 0.021 0.011 0.027

0.3 0.020 0.024 0.020 0.021
0.1 0.018 0.020 0.023 0.019

Table 9. Comparison with different uncertainty threshold con-
figurations on the FT3Ds dataset.

the number of iterations in GRU influences our model per-
formance in Table 7. Specifically, our model is trained with
four iterations, but evaluated with different iteration set-
tings. The increasing iteration times of GRU lead to im-
proved estimation accuracy but at the cost of decreased ef-
ficiency. Once the iteration number exceeds 4, the accu-
racy improvement becomes less significant while the run-
time dramatically increases. Thus, our final iteration choice
is set as 4, which is the trade-off between accuracy and effi-
ciency.

Significance of the uncertainty (with the initialization
in 3DFlow). We propose an uncertainty-aware scene flow
estimation framework, where uncertainty can evaluate and
reflect the reliability of our estimated scene flow. In the
main manuscript, we have conducted ablation studies about
with or without uncertainty based on the initialization in
MSBRN [3]. However, we notice that the performance of
MSBRN has relatively saturated. Therefore, we also show
the comparison results about how our proposed uncertainty
influences the estimation accuracy with the initialization in
3DFlow [14] in Table 8. Without designed uncertainty es-
timation, our network has 7.1% and 19.8% increasing esti-
mation errors on quarter and complete datasets in terms of
the EPE3D metric.

Uncertainty thresholds. As in the main manuscript, the
ground truth uncertainty is constrained by absolute and rel-
ative estimation error thresholds which dynamically decay
during the training. This leads the scene flow estimation to
progressively approach the ground truth flow, and makes the
network aware of which flow matching is unreliable. Here,
we conduct experiments by comparing different threshold
settings. As in Table 9, we can witness the best result when
the threshold starts at 0.5 and ends at 0.02.

6. Visualization
In this section, we show more qualitative results, including
the distribution of our proposed uncertainty, plug-and-play

Figure 1. Visualization of our predicted uncertainty during the
training process. We calculate the distribution histogram to in-
vestigate how the uncertainty varies during the training process.

results, and scene flow estimation results on both Flyingth-
ings3D and KITTI datasets.

Uncertainty distribution. We visualize the uncertainty
distribution at different training stages in Fig.1. At the ini-
tial training stages, the distribution variance of our uncer-
tainty is rather large because the network has almost no ca-
pability to predict accurate scene flow. With the training
process, our estimated flow tends to approach the ground
truth flow. In this case, our estimated uncertainty will de-
cline toward 0, since the uncertainty ground truth is deter-
mined by the estimation errors. When estimation errors are
less than certain thresholds, the uncertainty ground truth
will be set as 0. In this case, uncertainty will get smaller
with the training process, which progressively leads the
scene flow estimation toward a more accurate value.

Plug-and-play visualization of our proposed DSFR.
Our proposed Diffusion-based Scene Flow Refinement
(DSFR) module proves to be effective on a series of recent
methods as in Table 3 of the main manuscript and Table 5
of the supplementary materials. To more intuitively demon-
strate the effectiveness and superiority of our method, we
also display the visualization results of the plug-and-play
application on 3DFlow [14] and MSBRN [3] in Fig. 2.
From the figure, it is obvious that the estimation accuracy
of their predicted scene flow is improved dramatically when
combined with our proposed DSFR module. Notably, for
dynamic cars or brushwood with complex and repetitive



patterns, our DSFR can alleviate the mismatching and fur-
ther enhance the estimation reliability as in Fig. 2.

Comparison with previous scene flow networks on
challenging cases. As stated in the main manuscript, our
DifFlow3D has better robustness and accuracy on challeng-
ing cases due to the denoising intrinsic of diffusion and un-
certainty estimation. Here, we present more samples in Fig.
3. Previous scene flow networks commonly tend to have
flow mismatching on dynamics, such as the moving car in
the sample (a). Also, they have poor capability to estimate
accurate scene flow in regions with repetitive patterns, such
as the brushwood in samples (b) and (c). However, we
notice that our DifFlow3D has wonderful performance on
these challenging cases, which can be partly attributed to
the robustness of our finding correct point correspondences.

Qualitative scene flow estimation results. In Fig. 4
and Fig. 5, we respectively list five samples to illustrate our
predicted scene flow results on Flyingthings3D and KITTI
datasets. The scene flow estimation task aims to predict per-
point flow vectors. Inputs are point cloud frames captured
from two consecutive time steps as in the first column. In
the second column, we add the predicted scene flow onto
the first frame PC1 to form predicted PC2. In the last
column, we put predicted PC2 and original PC2 together.
These two point clouds are almost overlapped, which indi-
cates that our predicted flow is extremely accurate.

References
[1] Shoufa Chen, Peize Sun, Yibing Song, and Ping Luo. Dif-

fusiondet: Diffusion model for object detection. In Proceed-
ings of the IEEE/CVF International Conference on Com-
puter Vision, pages 19830–19843, 2023. 1

[2] Wencan Cheng and Jong Hwan Ko. Bi-pointflownet: Bidi-
rectional learning for point cloud based scene flow estima-
tion. In European Conference on Computer Vision, pages
108–124. Springer, 2022. 3

[3] Wencan Cheng and Jong Hwan Ko. Multi-scale bidirec-
tional recurrent network with hybrid correlation for point
cloud based scene flow estimation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision,
pages 10041–10050, 2023. 1, 2, 3, 5, 8

[4] Xiuye Gu, Yijie Wang, Chongruo Wu, Yong Jae Lee, and
Panqu Wang. Hplflownet: Hierarchical permutohedral lattice
flownet for scene flow estimation on large-scale point clouds.
In Proceedings of the IEEE/CVF conference on computer vi-
sion and pattern recognition, pages 3254–3263, 2019. 1, 3

[5] Cheng-Ju Ho, Chen-Hsuan Tai, Yen-Yu Lin, Ming-Hsuan
Yang, and Yi-Hsuan Tsai. Diffusion-ss3d: Diffusion model
for semi-supervised 3d object detection. Advances in Neural
Information Processing Systems, 36, 2024. 1

[6] Karl Holmquist and Bastian Wandt. Diffpose: Multi-
hypothesis human pose estimation using diffusion models.
In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 15977–15987, 2023. 1

[7] Yair Kittenplon, Yonina C Eldar, and Dan Raviv. Flow-
step3d: Model unrolling for self-supervised scene flow es-
timation. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 4114–
4123, 2021. 1

[8] Xingyu Liu, Charles R Qi, and Leonidas J Guibas.
Flownet3d: Learning scene flow in 3d point clouds. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 529–537, 2019. 1, 3

[9] Nikolaus Mayer, Eddy Ilg, Philip Hausser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In Proceedings of
the IEEE conference on computer vision and pattern recog-
nition, pages 4040–4048, 2016. 3

[10] Moritz Menze and Andreas Geiger. Object scene flow for au-
tonomous vehicles. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 3061–
3070, 2015. 3

[11] Gilles Puy, Alexandre Boulch, and Renaud Marlet. Flot:
Scene flow on point clouds guided by optimal transport. In
European conference on computer vision, pages 527–544.
Springer, 2020. 3

[12] Jiaming Song, Chenlin Meng, and Stefano Ermon.
Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502, 2020. 2

[13] Haoru Tan, Sitong Wu, and Jimin Pi. Semantic diffusion
network for semantic segmentation. Advances in Neural In-
formation Processing Systems, 35:8702–8716, 2022. 1

[14] Guangming Wang, Yunzhe Hu, Zhe Liu, Yiyang Zhou,
Masayoshi Tomizuka, Wei Zhan, and Hesheng Wang. What
matters for 3d scene flow network. In Computer Vision–
ECCV 2022: 17th European Conference, Tel Aviv, Israel,
October 23–27, 2022, Proceedings, Part XXXIII, pages 38–
55. Springer, 2022. 1, 2, 3, 5, 8

[15] Guangming Wang, Chaokang Jiang, Zehang Shen, Yanzi
Miao, and Hesheng Wang. Sfgan: Unsupervised generative
adversarial learning of 3d scene flow from the 3d scene self.
Advanced Intelligent Systems, 4(4):2100197, 2022. 3, 4

[16] Jianyuan Wang, Christian Rupprecht, and David Novotny.
Posediffusion: Solving pose estimation via diffusion-aided
bundle adjustment. In Proceedings of the IEEE/CVF Inter-
national Conference on Computer Vision, pages 9773–9783,
2023. 1

[17] Yi Wei, Ziyi Wang, Yongming Rao, Jiwen Lu, and Jie Zhou.
Pv-raft: Point-voxel correlation fields for scene flow estima-
tion of point clouds. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pages
6954–6963, 2021. 1, 3

[18] Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu, and Li
Fuxin. Pointpwc-net: Cost volume on point clouds for (self-
) supervised scene flow estimation. In Computer Vision–
ECCV 2020: 16th European Conference, Glasgow, UK, Au-
gust 23–28, 2020, Proceedings, Part V 16, pages 88–107.
Springer, 2020. 1, 4

[19] Weijia Wu, Yuzhong Zhao, Mike Zheng Shou, Hong Zhou,
and Chunhua Shen. Diffumask: Synthesizing images with



pixel-level annotations for semantic segmentation using dif-
fusion models. In Proceedings of the IEEE/CVF Interna-
tional Conference on Computer Vision, pages 1206–1217,
2023. 1

[20] Jiyao Zhang, Mingdong Wu, and Hao Dong. Generative
category-level object pose estimation via diffusion models.
Advances in Neural Information Processing Systems, 36,
2024. 1

[21] Yushan Zhang, Johan Edstedt, Bastian Wandt, Per-Erik
Forssén, Maria Magnusson, and Michael Felsberg. Gmsf:
Global matching scene flow. Advances in Neural Informa-
tion Processing Systems, 36, 2024. 3, 4



Figure 2. Visualization of plug-and-play results on 3DFlow [14] and MSBRN [3]. green, red points respectively indicate accurately
estimated PC2 (PC1 warped by estimated flow), and inaccurately estimated PC2. The accuracy here is measured by Acc3DR, which
means that if the EPE3D or relative error is lower than certain thresholds, the estimation is defined as an accurate one. Our proposed DSFR
can significantly improve the estimation accuracy of previous networks to the dynamic cars as in samples (a) and (c) or the brushwood with
repetitive patterns as in samples (b) and (d).



Figure 3. Comparison results with previous works on challenging cases of the KITTI dataset. green, red points respectively indicate
accurately estimated PC2 (PC1 warped by estimated flow), and inaccurately estimated PC2. Previous scene flow networks commonly
tend to have flow mismatching on dynamics, such as the moving car in sample (a). Also, they have poor flow estimation capability in
regions with repetitive patterns, such as the brushwood in samples (b) and (c). However, we notice that our DifFlow3D has wonderful
performance on these challenging cases, which can be partly attributed to the robustness of our finding correct point correspondences.



Figure 4. Visualization of the predicted scene flow on the FlyingThings3D dataset. Blue, Orange, green, red points respectively indicate
the first frame PC1, the second frame PC2, accurately estimated PC2 (PC1 warped by estimated flow), and inaccurately estimated PC2.



Figure 5. Visualization of the predicted scene flow on the KITTI dataset. Blue, Orange, green, red points respectively indicate the first
frame PC1, the second frame PC2, accurately estimated PC2 (PC1 warped by estimated flow), and inaccurately estimated PC2.


	. Overview
	. Motivation
	. Implementation Details
	. Training and Inference Process
	. Network Architecture Details

	. Datasets and Evaluation Metrics
	. Datasets and Data Pre-processing
	. Evaluation Metrics

	. Additional Experiments
	. More Comparison Results
	. Plug-and-play Results on PointPWC
	. Ablation studies

	. Visualization

