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The supplementary material is structured as follows:
• Sec. 1 presents implementation details on the network de-

signs and optimization parameters of DynVideo-E.
• Sec. 2 summarizes additional comparisons and ablations

of our DynVideo-E against SOTA approaches.
Furthermore, we provide a supplementary video show-

casing all 24 edited video comparisons of our method
against baselines, as well as 360° free-viewpoint renderings
of edited dynamic scenes from our DynVideo-E.

1. Implementation Details
DynVideo-E Network Details. As shown in Fig. 1, we em-
ploy a 10-layer multilayer perceptron (MLP) as our state-
conditional background network (a) and a 8-layer MLP as
our state-conditional canonical human-object network (b).
To edit the dynamic human, we establish a 9-layer canonical
human network (c) where the parameters of its first 8 layers
are initialized from the reconstructed human-object model
(b). During optimization, we train the 3D background
model (a) and the 3D dynamic human model (c) while
freeze the reconstructed dynamic human-object model (b).
During inference, for the source video that contains dy-
namic objects, we query the original dynamic human-object
model (b) for the pixels within the object masks to keep the
dynamic objects, while we query the edited dynamic hu-
man model (c) and edited background model for other pix-
els to obtain the colors and densities of edited contents. For
the human-background videos, we only need to query the
edited dynamic human model and edited background model
to obtain the edited contents.
Optimization Parameters. We optimize our DynVideo-E
using Adam optimizer [5]. We set the learning rate for our
training process as 0.0005 with 20000 training iterations.
We balance the loss terms using the following weighting
factors: λrgb = 5, λmask = 0.5, λdepth = 0.01, λ3D =
40, λ2D = 1.0, λNNFM = 1.0. The guidance scale of the
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3D diffusion prior and 2D personalized diffusion prior are
set to 5 and 20, respectively. We conducted all our experi-
ments on 1 NVIDIA A100 GPU, using the PyTorch [8] deep
learning framework.
Visualization of Text-guided Local Parts Super-
Resolution. To improve the effective resolution during
training, we utilize the text-guided local parts super-
resolution to render and supervise the local parts of
zoom-in humans and augment with view-conditional
prompts. We provide 8 visualization examples of text-
guided local parts super-resolution sampled during training
in Fig. 2. As shown in Fig. 2, even though all figures are
rendered in (128× 128) resolutions, rendering local parts
can largely improve the effective resolution and thus we
can supervise the detailed geometry and textures of edited
human body with diffusion priors.

2. Additional Results
More Qualitative Results. We present two more vi-
sual comparisons of our approach against all baselines
in Fig. 3 and Fig. 5. As shown in the figures, our
DynVideo-E achieves the best performances with photo-
realistic edited videos, which clearly demonstrates the su-
periority of our model against other approaches on editing
large-scale motion- and view-change human-centric videos.
Comparing the long (a) and short (b) video editing results
of Fig. 3, we find that baseline approaches perform better
on short videos than long videos, but still none of them can
edit the correct subject “Thanos” due to the large subject
motions and viewpoint changes in videos. In contrast, our
DynVideo-E produces high-quality editing results on both
short and long videos. Please refer to our supplementary
video for all 24 edited video comparisons of our method
against baselines.
Additional Ablation Results. We conduct ablation stud-
ies on more videos from HOSNeRF dataset [6] and Neu-
Man dataset [3]. To evaluate the effectiveness of each pro-
posed component in DynVideo-E, we progressively ablate
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Figure 1. DynVideo-E network designs: (a) Editing Background model, (b) Original human-object model, (c) Editing human model.

A lower body Hulk, side viewA right arm of Hulk, front viewA Hulk head, front viewAn upper body Hulk, back view

A left arm of Hulk, front viewA full body Hulk, side viewA midsection body Hulk, front view A full body Hulk, front view

Figure 2. Visualization examples of text-guided local parts super-resolution sampled during training.

Ablation components Average CLIP Score

Full model 0.674
w/o Super-solution 0.659
w/o Super-solution, Rec 0.650
w/o Super-solution, Rec, 2D SDS 0.572
w/o Super-solution, Rec, 3D SDS 0.641
w/o Super-solution, Rec, 3D SDS, 2D LoRA 0.593

Table 1. Averaged quantitative ablation results of our method.

each component from local parts super-resolution, recon-
struction loss, 2D personalized SDS, 3D SDS, and 2D per-
sonalization LoRA. We observe that the model even fails to
converge on some videos when we disable several compo-
nents of our model. We compute the average CLIP score
of all successfully edited videos in Tab. 1, where the CLIP
score progressively drops with the disabling of each compo-
nent, with the full model achieving the best performances,

which clearly demonstrates the effectiveness of our designs.
Visualization of Canonical Images from CoDeF [7] and
Atlas from Text2LIVE [1] and StableVideo [2]. For
challenging videos with large-scale motions and viewpoint
changes, CoDeF [7], Text2LIVE [1], and StableVideo [2]
largely overfit to input video frames and learn meaning-
less canonical images or neural atlas, and thus cannot gen-
erate meaningful editing results. We show several exam-
ples of their learned canonical images [7] and neural at-
las [1, 2] in Fig. 6, where Text2LIVE [1] and StableV-
ideo [2] utilizes the same foreground and background at-
las during editing. As shown in Fig. 6, canonical images
and atlas all fail to represent the challenging large-scale
motion- and view-change videos, and thus they cannot gen-
erate satisfactory editing results. In addition, the atlas per-
forms better for short videos in NeuMan dataset [3] than
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Figure 3. More qualitative comparisons of DynVideo-E against SOTA approaches on the Backpack scene (a) and Parkinglot scene (b).
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Figure 4. More qualitative comparisons of DynVideo-E against SOTA approaches on the Lab scene (a) and Dance scene (b).

long videos with a better background atlas, but the fore-
ground atlas still cannot represent the humans with large
motions. In contrast, our DynVideo-E represents videos
with the dynamic NeRFs to effectively aggregate the large-
scale motion- and view-change video information into a
3D dynamic human space and a 3D background space, and

achieves high-quality video editing results by editing the 3D
dynamic spaces.

Editing Operation Time Comparison. We compare the
editing operation time of our DynVideo-E against other
approaches on a long video of the HOSNeRF dataset
([300, 400] frames) using a single A100 GPU in Tab. 2.
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Figure 5. More qualitative comparisons of DynVideo-E against SOTA approaches on the Lab scene (a) and Dance scene (b).
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Figure 6. Visualization of canonical images from CoDeF [7], and foreground and background atlas from Text2LIVE [1] and StableV-
ideo [2] on (a) HOSNeRF dataset [6] and (b) NeuMan dataset [3].

Although other approaches are faster than ours, 2D-video
representation-based methods such as CoDeF [7], StableV-

ideo [2], and Text2LIVE [1] cannot accurately reconstruct
large-scale motion- and view-change videos and thus fail to



Method CoDeF [7] Text2Video-Zero [4] Rerender-A-Video [9] StableVideo [2] Text2LIVE [1] DynVideo-E (Ours)

Time ∼ 1mins 15mins 1.2 hrs ∼ 1mins ∼ 2 hrs 7.3 hrs

Table 2. Editing operation time comparison of our method against other approaches.

generate meaningful editing results, as validated in Fig. 6.
Text2Video-Zero [4] and Rerender-A-Video [9] fail to edit
the challenging human-centric videos with large-scale mo-
tion and viewpoint changes and their editing results are
highly inconsistent. Therefore, previous approaches cannot
handle the challenging human-centric videos no matter how
many computation resources are provided. In contrast, our
method is the first work to achieve highly consistent long-
term video editing that outperforms previous approaches by
a large margin of 50% ∼ 95% in terms of human prefer-
ence, and we leave accelerating our model with voxel or
hash grid representation as a faithful future direction.

Option 1 Option 2 Option 2 Option 2

Figure 7. 2 options to render interacted objects in background.

Interacted Objects in Background. As shown in Fig. 7,
we provide two options to render the interacted objects in
background: using the edited background model (Option
1); or using the original background model with the object
masks obtained during the camera pose calibration process
(Option 2). Since we integrate the edited model and origi-
nal model into a single model, we can conveniently switch
between these two options. We show results from Option 1
in the main paper.
Example of Human Preference Questionnaire. We uti-
lize Amazon MTurk * to recruit raters to rate our pairwise
comparing videos. For each comparison, we show our result
and one baseline result (shuffled order in questionnaires),
together with textual descriptions to raters and ask their
preferences. In total, we collected 1140 comparisons over
all pairwise results from 32 different raters. Fig. 8 illustrate
one comparison example in our questionnaires.
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Figure 8. One comparison example from our questionnaires.
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