
EMAGE: Towards Unified Holistic Co-Speech Gesture Generation via
Expressive Masked Audio Gesture Modeling

Supplementary Material

This supplemental document contains seven sections:
• Evlauation Metrics (Section A).
• BEAT2 Dataset Details (Section B).
• Baselines Reproduction Details (Section C).
• Settings of EMAGE (Section D).
• Visualization Blender Addon (Section E).
• Training time (Section F).
• Importance of lower body motion (Section G).

A. Evaluation Metrics

Fréchet Gesture Distance. A lower FGD, as referenced by
[67], indicates that the distribution between the ground truth
and generated body gestures is closer. Similar to the percep-
tual loss used in image generation tasks, FGD is calculated
based on latent features extracted by a pretrained network,

FGD(g, ĝ) = ∥µr − µg∥2 +Tr
(
Σr +Σg − 2 (ΣrΣg)

1/2
)
, (11)

where µr and Σr represent the first and second moments
of the latent features distribution zr of real human gestures
g, and µg and Σg represent the first and second moment of
the latent features distribution zg of generated gestures ĝ.
We use a Skeleton CNN (SKCNN) based encoder [1] and a
Full CNN-based decoder as the autoencoder pretrained net-
work. The network is pretrained on both BEAT2-Standard
and BEAT2-Additional Data. The choice of SKCNN over a
Full CNN encoder is due to its enhanced capability in cap-
turing gesture features, as indicated by a lower reconstruc-
tion MSE loss (0.095 compared to 0.103).

L1 Diversity. A higher Diversity [33] indicates a larger
variance in the given gesture clips. We calculate the average
L1 distance from different N motion clips as follows:

L1 div. = 1
2N(N−1)

∑N
t=1

∑N
j=1

∥∥∥pit − p̂jt

∥∥∥
1
, (12)

where pt represents the position of joints in frame t. We
calculate diversity on the entire test dataset. Additionally,
to compute joint positions, the translation is set to zero, im-
plying that L1 Diversity is focused solely on local motion.

Beat Constancy (BC). A higher BC, as defined by [34],
suggests a closer alignment between the gesture’s rhythm
and the beat of the audio. We identify the beginning of
speech as the audio beat and consider the local minima of
the velocity of the upper body joints (excluding fingers) as
the motion beat. The synchronization between audio and
gesture is computed in the following manner:

BC = 1
g

∑
bg∈g exp

(
−minba∈a∥bg−ba∥2

2σ2

)
, (13)

where g and a represent the sets of gesture beat and audio
beat, respectively.

B. BEAT2 Dataset Details

Statistics. The original BEAT dataset, as described by
[39], contains 76 hours of data for 30 speakers. We ex-
clude speakers 8, 14, 19, 23, and 29, which account for
16 hours of data, due to noise in the finger data, leaving
60 hours of data for 25 speakers (12 female and 13 male).
The speech and conversation portions are categorized into
BEAT2-standard and BEAT2-additional, containing 27 and
33 hours respectively. We adopt an 85%, 7.5%, and 7.5%
split for BEAT2-standard, maintaining the same ratio for
each speaker. BEAT2-additional is utilized for further im-
proving the network’s robustness. The results presented
in this paper are based on training with BEAT2-standard
speaker-2 only. The dataset includes 1762 sequences with
an average length of 65.66 seconds per sequence. Each
recording in a sequence is a continuous answer to a daily
question. Additionally, we report a comparison between
TalkShow [65] and our dataset in terms of Diversity and
Beat Constancy (BC), as shown in Table 8.

Table 8. Diversity and BC Comparisons. The local and global
diversity refers to the variance in joint positions with and without
global translations, respectively.

BC ↑ Diversity-L ↑ Diversity-G ↑
TalkShow [65] 6.104 5.273 5.273
BEAT2 (Ours) 6.896 13.074 27.541

Loss Terms of MoSh++. MoSh’s optimization involves
loss functions including a Data Term, Surface Distance En-
ergy, Marker Initialization Regularization, Pose and Shape
Priors, and a Velocity Constancy Term, which are described
as follows:
• Data Term (ED): Minimizing the squared distance be-

tween simulated and observed markers. In the given con-
text, the M̃, β,Θ, and Γ represent the latent markers,
body shape, poses, and body location respectively:

ED(M̃, β,Θ,Γ) =
∑
i,t

||m̂(m̃i, β, θt, γt)−mi,t||2.

(14)
• Surface Distance Energy (ES): Ensuring markers main-

tain prescribed distances from the body surface:

ES(β, M̃) =
∑
i

||r(m̃i, S(β, θ0, γ0))− di||2. (15)

• Marker Initialization Regularization (EI): Penalizing de-
viations of estimated markers from initial positions:

EI(β, M̃) =
∑
i

||m̃i − vi(β)||2. (16)

• Pose and Shape Priors: Penalizing deviations from mean
shape and pose:

Eβ(β) = (β − µβ)
TΣ−1

β (β − µβ), (17)

Eθ(Θ) =
∑
t

(θt − µθ)
TΣ−1

θ (θt − µθ). (18)

• Velocity Constancy Term (Eu): Reducing marker noise
and ensuring movement consistency:

Eu(Θ) =

n∑
t=2

||θt − 2θt−1 + θt−2||2. (19)

The overall objective function is the weighted sum of these
terms, balancing accuracy and plausibility:

E(M̃, β,Θ,Γ) =
∑

ω∈{D,S,θ,β,I,u}

λωEω(·). (20)

More details and pseudo code of the head and neck shape
optimization are available in the code release.

Details of FLAME Parameter Optimization. To animate
a face using the SMPL-X model with ARKit parameters
from the BEAT dataset, we estimate FLAME expression
parameters by minimizing the geometric error between an
animated ARKit and FLAME model. Addressing the op-
timization challenges posed by differing mesh structures,
we construct an ARKit-compatible FLAME model utilizing
Faceit, a Blender add-on tailored for crafting ARKit blend-
shapes. By driving the ARKit-aligned FLAME model with
each set of ARKit parameters from the BEAT dataset, we
obtain original FLAME expression parameters by minimiz-
ing the L2 distance loss between equivalent vertices. Fi-
nally, the optimized FLAME expression parameters can be
directly applied to SMPL-X. For facial identity parameters,
we preserve the same identity parameters on SMPL-X after
body fitting with MoSh++ [46].

C. Baselines Reproduction Details

Number of Joints. All baseline methods output full-body
joint rotations represented by g ∈ RT×(55×6) and, in addi-
tion to rotations, they decode global translations ∈ RT×3.

To provide a thorough comparison, we present subjective
results for both the upper body (excluding global motion)
and the full body.

Autoregressive Training. We observe that autore-
gressive training/inference-based models, such as Face-
Former and CodeTalker [19, 61], perform worse than non-
autoregressive methods. In non-autoregressive settings,
only positional embedding is used as input for cross-
attention to audio features, particularly when training with
Rot6D and axis-angle representations. The network archi-
tecture of FaceFormer and CodeTalker is based on trans-
formers and was initially proposed for training with the
representation of vertex offsets. As shown in Table 9, we
find that non-autoregressive training improves performance
with FLAME’s parameters. The results in this paper are ob-
tained using a non-autoregressive training approach. Non-
autoregressive training techniques have also been employed
in the training of EMAGE.

Table 9. Vertex Errors (MSE) with Different Training Meth-
ods. ‘FF’ and ‘CT’ refer to FaceFormer [19] and CodeTalker [61],
respectively. ‘TF’, ‘AR’, and ‘NonAR’ represent Teacher-Force,
AutoRegressive, and Non-AutoRegressive training, respectively.
We train on the VOCA dataset with a vertex loss, and BEAT2 with
a FLAME parameter loss combined with a vertex loss. Results
indicate that the same method performs differently when using
the two representations; in BEAT2, non-autoregressive training
demonstrates superior performance. The average MSE is calcu-
lated on 5023 and 10475 vertices for VOCA and BEAT2, respec-
tively:

FF-TF FF-AR FF-NonAR CT-TF CT-AR CT-NonAR
VOCA (x10-7) 6.636 6.023 6.138 7.914 7.637 7.541
BEAT2 (x10-7) 2.167 3.704 1.195 2.079 4.120 1.243

Adversarial Training. We omit the adversarial training in
Speech2Gesture [25], CaMN [39], and Habibie et al [28],
because their outputs with adversarial training show notice-
able jitter, even when we increase the weight for the velocity
loss. Similar effects are also observed in training with 3D
data for Speech2Gesture [25], as reported in the study by
[33].

Lower Body VQ-VAE for TalkShow. We introduce an ad-
ditional VQ-VAE for TalkShow, utilizing their autoregres-
sive (AR) model to jointly predict the class index of the
upper body, hands, and lower body. The global translations
are encoded in conjunction with lower body joints.

D. Settings of EMAGE

Training. We train our method for 400 epochs, gradually
increasing the ratio of masked joints from 0 to 95% linearly
according to the training epoch. This approach proves more

effective than a fixed masked ratio, such as 25%, based on
our experiments. The learning rate is 2.5e-4, and we use
the Adam optimizer with a gradient norm clipped at 0.99 to
ensure stable training.

Structure of VQ-VAE. We employ the same CNN-based
VQ-VAE [27] for all four body segments. The downsample
rate is set to 1 to achieve the best reconstruction quality. We
utilize a feature length of 512 for the codebook entries and
set the codebook size to 256. The total decoding space for
body gestures is represented as ∈ RT×2563 . The VQ-VAE
is trained for 200 epochs, with a learning rate of 2.5e-4 for
the initial 195 epochs, which is then decreased to 2.5e-4 for
the last 5 epochs.

Global Motion Predictor. We train the Global Motion
Predictor using an architecture that mirrors the CNN-based
structure of our VQ-VAE’s encoder and decoder The input
consists of local motions and predicted foot contact labels
∈ RT×334, and it outputs global translations ∈ RT×3.

E. Visualization Blender Add-on
For straightforward visualization of our BEAT2 dataset, we
utilize the SMPL-X Blender add-on [50]. As the latest
SMPL-X add-on does not support the full range of facial
expressions for SMPL-X, we extract 300 expression meshes
from the original SMPL-X model and added them as indi-
vidual blendshape targets into the SMPL-X model within
the Blender add-on.

F. Training time
We report the training time on a single L4, V100 and 4090
with a batch size (BS) of 64 for the best performance.

1-speaker 25-speaker
EMAGE 1-epoch 400-epoch 1-epoch 100-epoch Mem. BS
L4 (24G) 239s 26.5h 3197s 89.6h 20.1G 64
V100 (32G) 155s 17.2h 2073s 58.1h 20.1G 64
4090 (24G) 72s 8.0h 963s 27.1h 20.1G 64

Addtionally, pretraining of the 5 × VQVAEs for face,
hands, upper body, lower body, and global motion would
take 22.4 hours on 5 × 4090 GPUs.

1-speaker 25-speaker
VQVAEs × 1 1-epoch 700-epoch 1-epoch 100-epoch Mem. BS
L4 (24G) 200s 39.5h 2760s 74.4h 13.8G 64
V100 (32G) 131s 25.5h 1727s 48.0h 13.8G 64
4090 (24G) 61s 11.9h 802s 22.4h 13.8G 64

G. Importance of lower body motion
Lower body motion allows gestures semantically aligned
with the content of the audio to achieve more vivid and im-
pressive results, e.g., “hiking in nature” with a walking ges-
ture, “playing football” with a kicking motion; see figure

below. Compared with the upper body, it is more weakly
related to the audio, but it still has connections in the above
cases.

1

GroundTruth: … people are playing and kicking the football …

Generated: … or I can just walk around enjoying the sunshine…

In the implementation of EMAGE, we first obtain the
latents of different body components with separate MLPs.
Then, the lower body motion decoder leverages all la-
tents of “audio”, “upper body”, and “hands” for cross-
attention based lower-body motion decoding. We have also
observed that decoding directly from audio increases diver-
sity but reduces the coherence of the results on BEATv1.3.

FGD ↓ BC˜↑ Diversity ↑ MSE↓ LVD ↓
audio only 6.209 6.683 13.714 1.183 8.788
audio + upper + hands 5.423 6.794 13.075 1.180 8.715

