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In this appendix, we provide more details of our method
and present more experiment results. Specifically, we give
a detailed illustration of AdaTAD† in Section A. Then,
we present the implementation details between different
datasets in Section B. Next, we provide our results on the
Ego4D dataset in Section C. After this, we show additional
experiments and further analysis in Section D. Then, the
error analysis is conducted in Section E, and qualitative vi-
sualization is demonstrated in Section F. Finally, we discuss
the limitations of our work in Section G.

A. Further illustration of AdaTAD†

To reduce the memory usage and further scale up the
model and data, AdaTAD† proposes an alternative place-
ment for the temporal-informative adapters (TIAs). The en-
tire pipeline of AdaTAD† is shown in Fig. 1.

Concretely speaking, we retain the TIA architecture, but
eliminate the last residual connection in AdaTAD, as illus-
trated in Equation 1. Therefore, given layer i ’s output xi,
the corresponding TIA’s output x′

i will be 0 at the start of
the training, since the weights and biases of Wup are ini-
tialized to 0.

x′
i = σ(W⊤

down · xi),

x′
i = W⊤

mid ·DWConvk(x
′
i) + x′

i,

x′
i = α ·W⊤

up · x′
i.

(1)

What’s more, in the above equation, x′
i is not added into

xi, which is different from AdaTAD. This means that the
adapter’s outputs do not contribute to the middle activations
of the original backbone. Instead, it serves as a residual and
is directly added to the backbone’s final output xN , where
N is the total number of layers in the backbone. Conse-
quently, the output of the video encoder becomes y, as de-
picted in Equation 2. At the beginning of the fine-tuning,
y is initialized as xN , and is gradually augmented with the
aforementioned residuals to adapt the fine-tuning, which is
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Figure 1. Detailed architecture of AdaTAD†. The output of each
adapter will be added to the final output of the original backbone.

driven by the updated TIAs.

y = xN +

N∑
i=1

x′
i. (2)

In our design, the key to memory reduction lies in
stopping the gradient backpropagation for the original
backbone. Since the TIA’s output directly goes to the final
output, gradients during backpropagation do not trace back
to the original backbone but are confined to the shallow and
lightweight adapters. This architecture can be viewed as the
Side Network [20] or Ladder Network [24], meaning that it
creates a light network apart from the original heavy back-
bone. Compared to the traditional PEFT approach or our
AdaTAD, this design requires only a few activations from
the backbone, and it can further refine these activations to
adapt the downstream task during transfer learning.
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Table 1. End-to-End setting in different TAD datasets.

Config ActivityNet-1.3 [11] THUMOS14 [13] EPIC-Kitchens 100 [7] Ego4D-MQ [10]

Backbone Setting

Video Preprocessing Resize Sliding Window Sliding Window Padding
Frame Stride - 4 2 2
Frame Number 192×4 768 768×8 900×8
Frame Resolution 160×160
Data Augmentation RandomResizedCrop + Flip + ImgAug + ColorJitter
Feature Post Processing Spatial Average Pooling + Resize
Feature Resize Length 192 768 768 900

Detector Setting

Warmup Epoch 5 5 5 5
Total Epoch 15 60 35 15
Batch Size 16 2 2 2

B. Implementation Details

Training Details. Unless otherwise specified, we prefer
AdaTAD for its high performance. By default, mixed pre-
cision training [16] and activation checkpointing [4] are
adopted following previous work [6]. We also utilize flash
attention [8] to accelerate the computation and save the
memory in the VideoMAE-family models. Our method is
evaluated on four datasets, with the hyper-parameters de-
tailed in Table 1.

Data Preprocessing. Regarding the data preprocessing, we
provide the following instructions. For ActivityNet, due
to the variable action duration, we resize videos into fixed
lengths with 768 frames. After the video encoder, average
pooling is adopted along the spatial dimension, and the fea-
ture’s temporal length is resized to 192. For THUMOS14
and EPIC-Kitchens, given their longer video lengths, we ap-
ply the random truncation to a fixed-length window during
training and use sliding window during testing. For THU-
MOS14, the window length is 768 frames with a stride of
4. For EPIC-Kitchens, it’s 768×8 frames with a stride of 2,
and additionally, the feature after the video encoder is tem-
porally resized to 768. On the Ego4D-MQ dataset, since all
the videos are under 8 minutes, we sample 900×8 frames
with a stride of 2, and resize the feature to length 900.

Video Model. All the action recognition models used
in our paper, such as SlowFast [9], VideoSwin [15], and
VideoMAE [21], are pretrained on Kinetics-400 [14], ex-
cept the VideoMAEv2-giant [22] that is hybrid pretrained
and fine-tuned on Kinetics-710 [2]. Meanwhile, for the
ViT-based model, to avoid excessive temporal attention
for the untrimmed video, we chunk the video into shorter
clips before processing it in the ViT block. For exam-
ple, given the input video with 768 frames, we reshape
the 768 frames as 16×48, dividing it into 48 snippets with
16 frames each. Then VideoMAE processes these snippets

independently, but before sending them into our proposed
adapter, we reassemble the snippets into the original 768
frames to achieve cross-snippet information exchange. This
approach, focusing temporal attention only on 16 frames,
is specific to ViT-based models. CNN-based models like
SlowFast and local attention-based models like VideoSwin
do not require this reshaping.

Memory Usage on EPIC-Kitchens and Ego4D-MQ. On
both datasets, we use the VideoMAE-Large as the back-
bone, but differently pretrained on respective datasets. On
EPIC-Kitchens, the memory usage is 48.5GB per video for
768×8=6144 frames. On Ego4D-MQ, the memory usage
is 60.0GB per video for 900×8=7200 frames.

C. Results on Ego4D-Moment Queries

We present our results on the Ego4D-MQ dataset in Table 2.
The backbone is VideoMAE-Large, which is fine-tuned by
InternVideo on Ego4D classification task [3]. Note that
previous methods like VSGN [26] and ActionFormer [25]
use the same backbone, yet they extract high-resolution,
densely sampled offline features. Our work first estab-
lishes a stronger baseline by adopting an improved version
of ActionFormer on this dataset [19], achieving 27.07%
mAP. Furthermore, utilizing end-to-end training with our
proposed temporal-informative adapter elevates the perfor-
mance to 28.08% mAP.

More importantly, when we apply the full fine-
tuning on Ego4d-MQ, no performance gain was ob-
served (27.01% mAP). This implies that the pretrained
model is sufficiently robust, and the downstream data is
too limited for effective transfer learning. Nonetheless,
our AdaTAD manages to yield a performance increase of
+1.01%. This outcome further demonstrates the efficacy of
our adapter-based transfer learning.
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Table 2. Results on the validation set of Ego4D-Moment Queries v2.0. We report mAP at different tIoU thresholds. InternVideo [3]
denotes the backbone is VideoMAE-L [21], which is pretrained and fine-tuned on Ego4D-Moment Queries.

Method Feature E2E 0.1 0.2 0.3 0.4 0.5 Avg.

VSGN [26] EgoVLP ✗ 16.63 - 11.45 - 6.57 11.39
VSGN [26] InternVideo ✗ - - - - - 19.35
ActionFormer [25] EgoVLP ✗ 26.84 - 20.57 - 14.54 20.60
ActionFormer [25] InternVideo ✗ - - - - - 23.29
ASL [17] EgoVLP ✗ 29.45 - 23.03 - 16.08 22.83

AdaTAD InternVideo ✗ 32.40 29.50 26.98 24.43 21.88 27.07
AdaTAD InternVideo ✓ 33.53 30.71 28.04 25.51 22.59 28.08

D. Additional Experiments
In this section, we provide additional experiments to study
the effectiveness of our proposed method. These experi-
ments are omitted from the main paper due to lack of space.

D.1. More Results of AdaTAD†

In our paper, we propose two distinct adapter placement
designs: AdaTAD and AdaTAD†. The former directly in-
serts the adapters into the original backbone, while the lat-
ter positions the adapter outside the backbone. This exter-
nal placement in AdaTAD† stops gradient backpropagation
to the original backbone, negating the need to save mas-
sive intermediate activations and thus reducing memory us-
age. However, previous research [20] suggests that such
a design might comprise the performance, as the lighter
adapters may limit the representation capacity during trans-
fer learning. Therefore, to verify this hypothesis and ex-
plore the advantages of AdaTAD†, we conduct experiments
summarized in Table 3, leading to two key conclusions:

1. With identical input data, AdaTAD† underperforms
to AdaTAD. For example, when using VideoMAE-Base
with 768 frames and a resolution of 1602, the perfor-
mance of AdaTAD† drops from 71.5% to 70.2%. This
verifies that the transfer learning ability of AdaTAD is
better than AdaTAD†.

2. Under a similar memory budget, AdaTAD† can
achieve comparable performance than AdaTAD by
scaling up the input data. Owing to its lower memory
usage, AdaTAD† allows for larger input data, thereby
improving performance. For instance, AdaTAD† with
inputs of 768, 2242 can marginally outperform AdaTAD
with inputs of 768, 1602 under the same memory budget.

These experiments underscore the significance of data
scaling. Particularly with larger models like VideoMAEv2-
giant, AdaTAD has reached a limit of scaling up the input
data. In such scenarios, only AdaTAD† can manage a sim-
ilar memory budget while enhancing input data for supe-
rior performance. In conclusion, AdaTAD† is tailored for
higher detection performance in situations where the back-

Table 3. The advantage of AdaTAD† lies in scaling up the data
with low memory usage. When using the same input, the perfor-
mance of AdaTAD† is inferior to AdaTAD. However, under a sim-
ilar memory budget, AdaTAD† can achieve comparable or better
performance thanks to data scaling. We report the memory usage
and average mAP on the THUMOS14 dataset.

Model Method Input Mem. mAP

VideoMAE-S
AdaTAD 768, 1602 2.5G 68.8
AdaTAD† 768, 1602 1.8G 68.0
AdaTAD† 768, 2242 2.7G 68.9

VideoMAE-B
AdaTAD 768, 1602 4.9G 71.5
AdaTAD† 768, 1602 4.0G 70.2
AdaTAD† 768, 2242 4.9G 71.9

VideoMAE-L
AdaTAD 768, 1602 11.0G 73.5
AdaTAD† 768, 1602 8.1G 73.1
AdaTAD† 768, 2242 10.8G 73.7

bone model is very large and cannot accommodate more
frames or higher image resolution. In scenarios where
these are viable, AdaTAD remains the recommended
choice for optimal performance. Therefore, except in the
case of giant models, we default to using AdaTAD.

D.2. More Results with Swin and SlowFast

To validate the efficacy of our adapter tuning approach, we
expand our study to include a broader range of backbone
models. This extended analysis, detailed in Table 4, en-
compasses not only the window-based transformer model,
i.e., VideoSwin [15], but also the 3D CNN model, i.e.,
SlowFast [9]. The findings are in line with those re-
ported in the main paper, indicating that adapter tuning can
yield better detection performance compared to full fine-
tuning. Notably, the performance gains are even more pro-
nounced with VideoSwin and SlowFast than with Video-
MAE. Specifically, our method enhanced detection perfor-
mance from 55.1% to 63.7% with VideoSwin-B, and from
62.3% to 66.1% with SlowFast-R50.

3



Table 4. Compared to full fine-tuning, our adapter tuning can
achieve better performance with less memory. Param. is the
number of tunable parameters in the backbone. ∗ means out of
memory on A100-80GB, and we report the estimated number. We
conduct the following experiments on THUMOS14 dataset.

Model Setting E2E Param. Mem. mAP

VideoSwin-B

Feature ✗ 0 - 55.1
Snippet Full FT ✓ 87.6M 213G∗ -
Frame Full FT ✓ 87.6M 16.4G 60.4
AdaTAD ✓ 3.9M 16.1G 63.7

SlowFast-R50

Feature ✗ 0 - 62.3
Snippet Full FT ✓ 33.6M 36.9G 66.1
Frame Full FT ✓ 33.6M 3.9G 64.3
AdaTAD ✓ 11.4M 4.3G 66.0

D.3. Study of Different Kernel Size in TIA

In our temporal-informative adapter (TIA), we employ
depth-wise convolution along the temporal dimension to
capture context from adjacent frames. This design utilizes a
3D depth-wise convolution layer with kernel size (t, h, w).
By default, the kernel is set to (3, 1, 1). To assess the in-
fluence of various kernel sizes in TIA, we conduct a study
summarized in Table 5.

First, we expand the kernel size to (3, 3, 3), and note a
decrease in performance. This suggests that the spatial con-
text has been effectively handled by the original backbone,
and additional spatial processing could potentially disrupt
the pretrained knowledge. Subsequently, reducing the ker-
nel size to (1, 1, 1) results in inferior performance compared
to ours, likely due to insufficient temporal information ag-
gregation. Moreover, we gradually increase the temporal
kernel size from 3 to 7, 13, and 21, observing a consistent
downward trend in performance. This indicates that aggre-
gating a longer-range temporal context does not necessarily
benefit the backbone. Overall, our default TIA configura-
tion demonstrates the best performance.

Table 5. Ablation of different kernel size in depth-wise con-
vlution in AdaTAD. The order of the kernel size follows t, h, w.
VideoMAE-B is used as the backbone on THUMOS dataset.

DW Kernel 0.3 0.5 0.7 mAP

(3,1,1) 87.04 75.33 49.22 71.56

(1,1,1) 85.97 74.61 49.12 71.06

(3,3,3) 85.46 73.74 49.13 70.63

(7,1,1) 86.17 74.62 48.93 71.02
(13,1,1) 85.68 72.80 47.98 69.96
(21,1,1) 84.75 72.53 46.74 69.03

D.4. Ablation of Adapter Design on ActivityNet-1.3

In the main paper, we present a comparison of various
adapter architectural designs on THUMOS14. Extend-
ing our analysis, we conduct a similar ablation study on
ActivityNet-1.3, with results detailed in Table 6. The find-
ings from this study align with the conclusions drawn in the
main paper. Notably, since the size of ActivityNet is much
larger than THUMOS14, the competition in performance
metrics is more intense, resulting in smaller gains. De-
spite this, our AdaTAD still stands out among other adapter
architectural designs. Compared to using frozen features,
AdaTAD enhances performance from 36.64% to 38.39%,
affirming its efficacy in a more challenging dataset.

Moreover, we also combine our proposed TIA modules
with full fine-tuning strategy, but observe a decreased mAP.
This is due to the learning rate conflicts between the pre-
trained backbone and the newly added adapter. The former
prefers a smaller learning rate since the model is pretrained
on large datasets, while the latter prefers a larger learning
rate since it is newly added and randomly initialized.

Table 6. Ablation of different adapter architectural designs on
ActivityNet-1.3. VideoMAE-B is used as the backbone.

Setting E2E Param. Mem. mAP gains

Snippet Feature ✗ - - 36.64

+ LongLoRA [5] ✓ 28M 6.2G 37.69 +1.05
+ Full FT ✓ 86M 5.6G 38.13 +1.49
+ Plain Adapter [12] ✓ 3.6M 4.8G 38.21 +1.57
+ AdaTAD (w.o. residual ) ✓ 4.0M 4.9G 38.23 +1.59
+ AdaTAD ✓ 4.0M 4.9G 38.39 +1.75

+ Full FT + TIA ✓ 90M 5.8G 37.89 +1.25

D.5. AdaTAD with Different Detector Head

Our end-to-end framework with the introduced adapter is
effective not only on ActionFormer [25], but also with other
TAD heads. As shown in Table 7, we successfully em-
ploy the proposed method on GTAD [23] and TriDet [18].
When using VideoMAE-Large as the backbone, we ob-
serve significant improvements. For instance, compared
to using densely extracted snippet features (16 frames per
snippet with a resolution of 2242), our approach elevates
GTAD’s performance from 50.8% to 55.5%, and TriDet’s
performance from 68.8% to 74.1%. Additionally, compared
to ActionFormer, TriDet achieves better detection perfor-
mance with offline features and end-to-end training, thanks
to the proposed SGP layer and Trident-Head. Overall, our
proposed end-to-end training paradigm is agnostic to differ-
ent action detectors, and it can boost the detector’s perfor-
mance by a large margin.
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(a) Sensitive Analysis. Left: normalized mAP at tIoU=0.5 under different
video contents. Right: The relative normalized mAP change at tIoU=0.5 with
respect to different characteristics of the ground truth instances.
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(b) False Negative Profiling. The false negative rates are broken
down into fine-grained metrics under different coverage, length, and
the number of instances.

Figure 2. We adopt the VideoMAEv2-giant as the backbone and report more error analysis of our method on THUMOS14 using [1]. The
first row denotes that we use snippet features to achieve an average mAP of 69.6%. The second row denotes that we use end-to-end training
by AdaTAD† and achieve an average mAP of 75.4%.

Table 7. Ablation of different detector heads. VideoMAE-L is
used as the backbone on THUMOS dataset.

Detector Head Setting 0.3 0.5 0.7 mAP

GTAD [23]
Feature 65.8 53.6 31.3 50.8
AdaTAD 69.5 57.6 37.4 55.5

ActionFormer [25]
Feature 82.9 70.8 42.7 66.5
AdaTAD 87.7 76.7 52.4 73.5

TriDet [18]
Feature 84.0 73.4 45.1 68.8
AdaTAD 88.7 78.1 52.2 74.1

E. Error Analysis

Apart from the false positive profiling provided in the main
paper, we also present the sensitive analysis and false nega-
tive (FP) profiling in Fig. 2. Note that the first row utilizes
offline snippet features, and the second row utilizes the end-
to-end training by AdaTAD†. For the error analysis process
and metrics, we refer the readers to [1] for more details.

From Fig. 2(a), we can find that the performance across
all metrics is improved by end-to-end training. Especially,
the mAP of long actions (XL) is visibly increased. This
phenomenon is more evident in false negative profiling. In
Fig. 2(b), end-to-end training significantly reduces the FP
rate from 24.3% to 10.8%, leading to better detection ac-
curacy. Moreover, even for small actions, our method also
alleviates false negative detection. For instance, it amaz-
ingly reduces the FP rate from 6.7% to 0% under the XS
#instances.

F. Visualization

Further, we present the qualitative visualization of our pre-
diction on THUMOS14 dataset. In Fig. 3, we plot the
ground truth actions of each video (drawn in red and above
the black line), and also the top-20 predicted proposals
(drawn in colors and under the black line). The color of
the proposal represents the maximum IoU of this proposal
to the ground truth actions. Therefore, a proposal with a
deeper color means it overlaps more with the ground truth,
indicating this is a high-quality proposal. From the figure,
we can observe that our method can yield accurate candi-
date actions and also provide reasonable proposal ranking.

G. Limitations and Future Work

One limitation of our method is how to further scale up
the input data, since some datasets require extremely long
video input. For instance, on Ego4D-MQ dataset, we uti-
lize the VideoMAE-Large with 7,200 frames, costing 60GB
per video. Although this is already an amazing data size
for end-to-end training, however, it’s meaningful to further
scale up the frame resolution or model size to achieve bet-
ter performance with reduced memory usage. On the other
hand, loading, decoding, and processing such long videos
take much longer time than pre-extracted features, which
may cause difficulty in network training.

Interesting future directions include end-to-end training
with multi-modality tasks, e.g., end-to-end video grounding
and end-to-end moment retrieval, pretraining for action lo-
calization, and open vocabulary end-to-end temporal action
detection.
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Figure 3. Qualitative results of our method with VideoMAEv2-giant on THUMOS14. The color of the proposal represents the
maximum IoU of this proposal to ground truth actions. We plot the ground truth actions of each video (drawn in red and above the black
line), and top-20 predicted proposals (drawn in colors and under the black line).
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