
Extend Your Own Correspondences: Unsupervised Distant Point Cloud
Registration by Progressive Distance Extension

Supplementary Material

7. Detailed Experiment Setup

7.1. Comparison Methods

Considering the lack of genuine unsupervised distant point
cloud registration methods at present, we compare EYOC
against supervised methods instead. The most compared
baselines are the two fully-convolutional methods, FCGF
[9] and Predator [20]. The former utilizes MinkowskiNet
for sparse voxel convolution, while the latter builds upon
KPConv which classifies as a point convolution method. On
the other hand, performances of SpinNet [2], D3Feat [4],
CoFiNet [54], and GeoTransformer [37] are quoted verba-
tim from GCL [29].

7.2. Formal Metric Definition

Given a test set with labels X[d1,d2] ={
(Si, T i, Ri, ti)

∣∣ ||ti||2 ∈ [d1, d2]
}

where Si, T i are
point clouds and Ri ∈ SO(3), ti ∈ R3 are the ground truth
transformation, along with the estimated transformation
R̂i, t̂i, the absolute rotational error and absolute transla-
tional error are defined as Eqs. (5) and (6). Please note that
we abbreviate X for X[d1,d2] hereafter to save space where
the subscript does not matter.

REi
X = arccos

(
trace(RiT R̂i)− 1

2

)
(5)

TEi
X = ||ti − t̂i|| (6)

It is generally observed that, when registration performs
well, these errors are usually limited and predictable; How-
ever, they could drift randomly during failures, often lead-
ing to more than 90◦ or 50m of error. It is neither in-
terpretable nor repeatable to average the error over all the
pairs containing occasional arbitrarily large errors; On the
contrary, we often choose to average only those errors of
the successful pairs. The registration success is assessed
based on the criterion of S(X, i) = 1(REi

X < Trot) ×
1(TEi

X < Ttrans), where 1(·) is the Iverson Bracket, and
Trot = 5◦, Ttrans = 2m are two generally accepted thresh-
olds. After that, we could calculate the RRE, RTE as the
average of RE and TE of succeeded pairs, and RR as the
portion of successful pairs over all pairs, as formulated in
Eqs. (7) to (9):

RREX =
1

|X|∑
i=1

S(X, i)

|X|∑
i=1

(
S(X, i)×REi

X

)
(7)

RTEX =
1

|X|∑
i=1

S(X, i)

|X|∑
i=1

(
S(X, i)×TEi

X

)
(8)

RRX =
1

|X|

|X|∑
i=1

S(X, i) (9)

Next, mRR is defined as the average of RR over five reg-
istration subsets with ||t|| ∈ [d1, d2] meters, and the tuple
(d1, d2) is parameterized according to our specification, i.e.,
DV 2V = {(5, 10), (10, 20), (20, 30), (30, 40), (40, 50)},
respectively according to Eq. (10):

mRR =
1

|DV 2V |
∑

(d1,d2)∈DV 2V

RRX[d1,d2]
(10)

Lastly, given a dataset X and the estimated correspon-
dences (j, k) ∈ Ci denoting that pj ∈ Si, qk ∈ T i are a pair
of correspondence, the inlier ratio is defined as Eq. (11):

IRX =

|X|∑
i=1

∑
(j,k)∈Ci

1(||Ripj + ti − qk|| ≤ Tinlier)

|X| × |Ci|
(11)

Where Tinlier = 0.3m is the inlier distance threshold.

8. Method Details
8.1. Description of SC2-PCR

We describe the design philosophy and algorithm of SC2-
PCR [7] for better stand-alone completeness. SC2-PCR
consists of two cascading contributions: a spatial compat-
ibility measure, SC2, and a complete registration pipeline
built upon fascinating properties of the SC2 measure.

Past literature have extensively used first order spatial
compatibility to measure correspondence quality, which is
defined as Mx,y =

∣∣∣||piS − pjS ||2 − ||pkT − plT ||2
∣∣∣ for two

correspondences cx = (piS , p
k
T) and cy = (pjS , p

l
T), where

labeler, student - MinkowskiNet backbones

lambda - EMA decay factor

B, b - frame interval bound, and batch size

update_distance() - recalculates all frame pairs with increased B

spatial_filter() - match and adaptively filter features

SC2_PCR() - original SC2-PCR implementation

NN_search() - KD-Tree nearest-neighbor search

for epoch in range(num_epochs):

EMA update

labeler.state_dict = labeler.state_dict * lambda + \

student.state_dict * (1-lambda)

increase the frame interval B and update dataset

dataset, B = update_distance(dataset, epoch, num_epochs, B)

for iter in range(len(loader)):

inputs = dataset.__getitem__(iter)

feat0_s, feat1_s = student(inputs) # [b,N1,C], [b,N2,C]

if B != 1:

generate matches with EYOC

with torch.no_grad():

feat0_l, feat1_l = labeler(inputs) # [b,N1,C], [b,N2,C]

initial_match = spatial_filter(feat0_l, feat1_l) # [b,Nx,2]

trans = SC2_PCR(initial_match) # [b,4,4]

match = NN_search(inputs[“points”], trans) # [b,5000,2]

else:

use pseudo matches generated using identity pose

match = NN_search(inputs[“points”], [np.eye(4) for _ in range(b)])

contrastive_loss(feat0_s, feat1_s, match).backward()

Figure 7. Python style pseudo code of the core implementation of EYOC.

cx, cy ∈ C and M is a matrix of size |C| × |C|. The higher
the metric is, the more likely both correspondences cx, cy
are correct. However, there is still a chance that outliers can
be compatible with inliers, making them hard to distinguish.
In contrast, the SC2 measure uses M ·M2 to measure the
number of correspondences in the universe that are simulta-
neously compatible with two compatible correspondences.
As all inliers are compatible with each other, the inliers re-
ceive skyrocketing compatibility scores (≥ #inliers − 2)
and hence are easily identified from outliers.

Built upon the SC2 measure, SC2-PCR takes a two-
stage filtering pipeline using the spectral technique to se-
lect the most promising seed correspondences and to de-
termine the optimal transformation. The algorithm is both
GPU-compatible and non-parametric, resulting in outstand-
ing registration recall, FPS, and generalization capability.
All these features entitle SC2-PCR as an ideal labelling al-
gorithm on unlabelled point cloud data.

8.2. Pseudo Code

We provide a skeletal structure of EYOC in Fig. 7. All
components of EYOC are displayed in the figure. EMA

update and distance extension of B precede every epoch,
effectively preparing proper weights and data for the next
epoch. Inside every training step, if the current frame in-
terval is one, then identity pose will be used for supervised
training. Otherwise, the labeler, SR and CR will work to-
gether to produce fake correspondence labels. Finally, such
labels can be used to calculate a contrastive loss.

9. Additional Results

We place the comparison between EYOC and other distant
point cloud registration methods, APR and GCL, in Tab. 6.
While EYOC lags a little bit from the SOTA work GCL with
oracle labels on new data (K→K, N→N), scoring −10.2%
and 23.8% less mRR on KITTi and nuScenes respectively,
EYOC scores consistently better than APR. Moreover, ex-
isting supervised methods deteriorate greatly when placed
out-of-distribution (K→W, N→W), where EYOC gets a
lot closer to GCL with −9.6% and −2.2% (ϕ →W).
When finetuned from the pretrained GCL weights, EYOC
achieves even better results with X% and Y% gap from
GCL instead. We conclude that EYOC, although suffering a

Method
Labelled→

mRR [5,10] [10,20] [20,30] [30,40] [40,50]
Unlabelled

APR

K→ K 77.9 99.2 96.8 88.3 67.6 37.8
K→ W 69.1 97.1 87.4 68.2 53.2 39.8
N→ N 58.8 99.5 85.6 43.8 45.7 19.2
N→ W 68.4 95.2 84.5 60.0 56.1 46.3

GCL

K→ K 93.5 99.0 98.8 96.1 91.7 82.0
K→ W 88.0 100.0 99.0 91.8 79.9 69.1
N→ N 85.5 99.3 97.7 91.8 77.8 60.7
N→ W 80.6 99.0 95.2 81.2 67.6 60.2

EYOC
ϕ → K 83.2 99.5 96.6 89.1 78.6 52.3
ϕ → W 78.4 97.6 91.3 78.2 65.5 59.3
ϕ → N 61.7 96.7 85.6 61.8 37.5 26.9

Table 6. Comparison of EYOC, FCGF+APR(a) and
GCL+Conv, where K, W, N, ϕ represent KITTI, WOD, nuScenes
and scratch. While we observe GCL > EYOC > APR in super-
vised settings, EYOC excels on new unlabelled data by unsuper-
vised finetuning. This will be included in the revision.

performance gap with the SOTA distant PCR method GCL,
boasts top-tier performance on unlabelled new data distri-
butions. Furthermore, the defeat can be potentially negated
or even overturned should EYOC uses the same group-wise
training scheme as GCL, which counts as our future work.

10. Discussions
Compatibility with previous literature. Moreover, we
notice that Hypothesis 4.1 would hint that point cloud fea-
tures would deteriorate (i.e., move) on the feature space
slower than linear functions relative to the distance-to-
LiDAR (e.g., radical functions). We argue that this does
not contradict previous literature [29] which found the rela-
tion to be linear; While previous literature looked into the
in-domain performance of converged models, we are look-
ing into the out-of-domain performance of models during
training. It is natural for networks to behave differently on
seen and unseen data.

Performance Upper Bound. We note that better network
weight boosts SC2-PCR’s label quality and better labels
promote network performance. Consequently, EYOC’s up-
per bound should be the combination of (i) bound of SC2-
PCR labels given a hypothetical oracle feature extractor,
and (ii) bound of a feature extraction network given an or-
acle labeler algorithm, i.e., supervised training. Our incli-
nation is that bound (ii) is tighter and contributes a major
decrease in the upper bound while SC2-PCR, i.e., bound
(i), plays a minor part, as evidenced by the RR@[40m,50m]
values consistently remaining below 65%, far from the 90+
RR reported in SC2-PCR.

Error Accumulation. We believe EYOC is capable of
avoiding error accumulation thanks to the induction bias
present in the filtering pipeline. Pose estimators such as
SC2-PCR tend to output poses that are either close to perfect

(a)

(c)

(e)

(b)

(d)

(f)

nuScenes WOD

Figure 8. Visual groundings for our hypothesis on (a,c,e)
nuScenes [6] and (b,d,f) WOD [43]. Cosine similarity of corre-
spondences with its distance to two LiDARs, d1, d2, is displayed
for I ∈ [1, 1] (top), I ∈ [1, 15] (middle), and I ∈ [1, 30] (bottom).
Decision boundaries at sthresh = 0.6 are highlighted in cyan.

(Fig. 6) or randomly distributed in the SO(3) space. While
the presence of suboptimal features may decrease the per-
centage of perfect poses, they do not incur significant errors
on all output poses, and the precise poses stay correct. In re-
turn, during instances of failure, the random erroneous pos-
itives and negatives are scattered in feature space (as any-
thing could be matched with anything else), effectively can-
celing each other out, yielding limited impact compared to
the correct labels.

11. Visualization
11.1. Spatial Filtering on other Datasets

We display the spatial feature similarity results on WOD
and nuScenes in Fig. 8, where d1, d2 denotes the distance
from a correspondence to the two LiDAR centers, and the
similarity is indicated by brightness. The decision bound-
ary of sthresh = 0.6 is highlighted in cyan, similar to
Fig. 4. WOD exhibits almost identical traits to those on
KITTI, showing a drastic feature deterioration in the close-
to-LiDAR regions as well as the extremely far regions, and
cutting off at 40m would almost always cut the closer half
below 0.6 similarity, indicating the similarity between the

two filtering strategies. On the other hand, nuScenes dis-
plays a similar pattern where high-similarity regions are
clustered 20 meters away from the LiDAR. Compared to
those on KITTI or WOD, the pinnacle region in nuScenes is
slightly shifted towards the LiDAR compared with the other
two datasets, due to the lower LiDAR resolution and conse-
quently lower density. In nuScenes, it would be improper to
cut off at 40m, although the training does converge and has
decent performance as reported in Tab. 1. While this phe-
nomenon is attributed to the discrepancy between KITTI-
style datasets and nuScenes-style datasets, we also highlight
that EYOC is robust under such discrepancies even when
the patterns for the pretraining dataset (WOD) largely differ
from the actual one on the finetuning dataset (nuScenes).

11.2. Registration Results

We display the registration results of EYOC on KITTI,
nuScenes and WOD in Figs. 9 to 11.

Figure 9. Registration results of EYOC on KITTI [16].

Figure 10. Registration results of EYOC on nuScenes [6].

Figure 11. Registration results of EYOC on WOD [43], demonstrated using only the second return.

