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1. 2D Image Fitting
1.1. Comparisons with baselines

Fig. 1 provides more qualitative comparisons between the FINER and baselines on fitting images.

1.2. Effect of number of hidden neurons

Fig. 2 shows the PSNR on fitting image with varying number of hidden neurons. In all cases, the number of hidden layers
were fixed to be two. FINER significantly outperforms baselines with the increase of hidden neurons.

2. 3D Shape Representation
Fig. 3 shows qualitative comparisons on representing the signed distance field of Beared Man, Dragon, Thai Statue and Lucy.

3. Neural Radiance Fields Optimization
Fig. 4 shows more close-up and full-image comparisons on the Blender dataset [5].

4. Heuristic NTK Analysis for FINER network
We use the Neural tangent kernel (NTK) theory [3] to analysis the convergence behavior of FINER. Consider a FINER
network with 1D input, 1D output and 1 hidden layer with n neurons, then it can be written as

f(x; θ) =

n∑
k=1

ckσ(wkx+ bj) (1)

where x ∈ R is the input, θ = {w ∈ Rn×1, b ∈ Rn} is the parameters of the first layer, c ∈ Rn is the output weight, and
σ(x) = sin((|x|+1)x) is the activation function. To simplify, we follow [2] that only varies θ and keeps c fixed, specifically,
ck = ± 1√

n
. Obviously, the derivative of σ(x) is

σ′(x) = (2|x|+ 1) cos((|x|+ 1)x) (2)

Thus,
∇wf(x; θ) =

[
xc1σ

′(w1x+ b1), · · · , xcnσ′(wnx+ bn)
]

= x
[
c1σ

′(w1x+ b1), · · · , cnσ′(wnx+ bn)
] (3)

and
∇bf(x; θ) =

[
c1σ

′(w1x+ b1), · · · , cnσ′(wnx+ bn)
]

(4)
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According to [3], the NTK matrix for the shallow FINER network is K = [K(xi, xj)]i,j=1,··· ,N , where N is number of
inputs, and

K(xi, xj) = Eθ⟨∇θf(xi; θ),∇θf(xj ; θ)⟩
= Eθ⟨∇wf(xi; θ),∇wf(xj ; θ)⟩+ Eθ⟨∇bf(xi; θ),∇bf(xj ; θ)⟩

= (xixj + 1)Eθ

n∑
k=1

c2kσ
′(wkxi + bk)σ

′(wkxj + bk)

= (xixj + 1)Eθ

n∑
k=1

c2kσ
′(gk(xi))σ

′(gk(xj))

= (xixj + 1)Eθ

n∑
k=1

c2k (2|gk(xi)|+ 1)(2|gk(xj)|+ 1)︸ ︷︷ ︸
Scale term

cos ((|gk(xi)|+ 1)gk(xi)) cos ((|gk(xj)|+ 1)gk(xj))︸ ︷︷ ︸
Sign term

(5)

where gk(xi) = wkxi + bk.
It is observed that, the scale terms are approximately proportional to the absolution of bias bk for all nodes of the kernel,

however the change rule of sign terms for diagonal elements differs significantly from non-diagonal elements due to the
high-frequency oscillation of cos((|x| + 1)x) when x is large. Specifically, the sign terms are almost always positive for
diagonal elements K(xi, xi) while could be either positive or negative for non-diagonal elements K(xi, xj) with nearly
equal probability for different k(k = 1, 2, . . . , n), leading to cancellation between these terms. As a result, the diagonal
elements K(xi, xi) are increased with the increase of |b|, while the non-diagonal elements K(xi, xj) can be very small,
appearing as a diagonal enhanced kernel. Furthermore, a matrix with a stronger diagonal structure has a greater number of
large eigenvalues. By NTK theory [3, 8], the convergence of FINER with a larger |b|, that is, with larger NTK eigenvalues,
is expected to be accelerated, compared with classical MLP and SIREN [7].

5. Comparisions with SOTAs
While [1, 4, 6] have already explored the idea of variable frequencies and amplitudes in SIREN, FINER differs significantly
from them:
1) We propose a new activation function with inherent variable frequency characteristics, improving the precision and com-
pactness of INR.
2) The SOTA methods require additional (trainable) parameters but exhibit limited control capability over frequency and
amplitude variations. Modulated Periodic Activation lacks direct control over frequency. The frequency modulation of
MetaSin is constrained by the number of sinusoidal components. NeuRBF employs sinusoidal composition only in the
first layer of the MLP and could be viewed as a variant of positional encoding [8], with a fixed and immutable modulation
frequency.

In Tab. 1, we provide comparisons on 2D image fitting between FINER, Modulated Periodic Activation with an auto-
encoder setting (MPA), MLP with MetaSin activation (MS-MLP), and MLP with sinusoidal composition in NeuRBF (SC-
MLP), where the natural datase [8] is adopted. Note that, only the components of controlling frequency/amplitudes are used
for fair comparisons. FINER outperforms the baselines.

Table 1. Quantitative comparisons on image fitting.

Metrics MPA MS-MLP SC-MLP FINER
PSNR ↑ 25.96 30.69 26.96 40.76
SSIM ↑ 0.7334 0.8850 0.7518 0.9790
LPIPS ↓ 3.62e-1 1.266e-1 1.89e-1 2.56e-3

6. Visualizations of the trained frequencies
Fig. 5 shows the activation statistics of the first two layers of FINER. The maximum frequency grows with the increase of
layers, additionally, larger k results in larger frequencies in different layers.
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Figure 1. Qualitative comparisons between the FINER and baselines on fitting images.
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Figure 2. Qualitative comparisons between the FINER and baselines on fitting images with different number of hidden neurons.



Figure 3. Qualitative comparisons between the FINER and baselines on representing the signed distance field.
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Figure 4. Qualitative comparisons between the FINER and baselines on NeRF.
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Figure 5. Activation statistics at initialization for a 2-layer FINER. Better viewed on screen with zooming in.
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