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A. Additional Results
A.1. ImageNet Classification

We perform ImageNet-1K [7] classification with two settings
(1) only using the backbone and (2) using the [CLS] token.
We show the results in Tab. 1.

Method MAE iBOT EsViT SimMIM GLID (1) GLID (2)

LIN 67.8 79.5 81.3 56.7 75.9 76.2
FT 83.6 84.0 83.9 83.8 85.4 85.3

Table 1. Linear probing (LIN) and fine-tuning (FT) performance
on ImageNet-1K.

A.2. Feature Pyramid Networks (FPN)

By default, GLID uses BiFPN [15] for interactions of the
multi-scale feature maps. We also use popular MSDefor-
mAttn following Deformable DETR [16]. The results are in
Tab. 2.

FPN type FLOPs Params ADE20K (mIoU)

BiFPN 33.8G 5.0M 52.7
MSDeformAttn 55.3G 5.5M 53.1

Table 2. Ablation of the FPN architectures.

A.3. Head Parameter Size

In Tab. 3, we show the numbers of parameters in different
linear heads.

Keypoint Det Segsem Segins Segpan Depth

0.6M 0.5M 0.9M 0.6M 0.9M 1.3M

Table 3. Numbers of parameters of task heads.

A.4. Ablation of Fine-tuning Data

We conduct additional experiments using MAE and Sim-
MIM pre-trainings to further ablate the impact of fine-tuning
data, with results shown in Tab. 4. We observe that our
encoder-decoder pre-training consistently outperforms other
encoder-only pre-training methods.

% Data 10 20 50 100

Method SimMIM MAE GLID SimMIM MAE GLID SimMIM MAE GLID SimMIM MAE GLID

mIoU↑ 27.1 27.5 31.2 30.9 33.0 35.0 39.8 42.5 46.3 50.6 51.5 52.7
RMSE↓ 0.471 0.403 0.317 0.401 0.363 0.303 0.384 0.341 0.295 0.343 0.340 0.293

Table 4. Fine-tuning with limited data.

B. Training Details
B.1. Pre-training

Hyper-parameters. The default setting is in Tab. 5. We
use xavier uniform [9] to initialize all Transformer blocks
following original ViT [8]. By default, we use batch size of
1024 and scale the learning rate with linear rule, lr = base lr
× batch size / 256 [10].

config value

optimizer AdamW [14]
base learning rate 1.5× 10−4

weight decay 0.05
optimizer momentum β1, β2=0.9,0.95 [3]
learning rate schedule cosine decay [13]
warmup epochs 40
augmentation RandomResizedCrop

Table 5. Pre-training on ImageNet-1K [7].

B.2. Fine-tuning

Object detection. The default setting is in Tab. 6. We
use the multi-scale augmentation strategy introduced in
DETR [1] for data augmentation. We use a step-wise learn-
ing rate decay schedule and decay the learning by 10× at
epoch of 40.
Image segmentation. The default setting is in Tab. 7. Fol-
lowing Mask2Former [4], we use random scale jittering
between 0.5 and 2.0, random horizontal flipping, random
cropping, and random color jittering for data augmentation.
We use the crop size of 640×640. We apply the poly [2]
learning rate schedule to decay the learning rate.
Pose estimation. The default setting is in Tab. 8. The
default training setting in mmpose [6] is utilized for fine-
tuning. The data augmentations include random flipping,
half-body transformation, random scale, random rotation,



config value

optimizer AdamW
learning rate 1× 10−4

backbone learning rate 1× 10−5

batch size 16
weight decay 0.05
optimizer momentum β1, β2=0.9,0.999
training epochs 50
drop path [11] 0.1

Table 6. Fine-tuning on COCO object detection.

config value

optimizer AdamW
learning rate 1× 10−4

backbone learning rate 1× 10−5

batch size 16
weight decay 0.05
optimizer momentum β1, β2=0.9,0.999
training iterations 160K
drop path 0.1
decoder drop path 0.2

Table 7. Fine-tuning on ADE20K segmentation tasks.

and color jittering. The models are trained for 210 epochs,
and we decay the learning by 10× at the 170th and 200th
epochs. We use layer-wise learning rate decay following [5].

config value

optimizer AdamW
learning rate 5× 10−4

batch size 512
weight decay 0.1
layer-wise decay[5] 0.8
optimizer momentum β1, β2=0.9,0.999
training epochs 210
drop path 0.3

Table 8. Fine-tuning on COCO pose estimation.

Depth estimation. The default setting is in Tab. 9. The
linear learning rate warm-up strategy is applied for the first
30% iterations and the cosine annealing learning rate strat-
egy is adopted for the learning rate decay. Following Bins-
Former [12], we utilize random flipping, random crop, ran-
dom rotation, and color jittering for data augmentation.

config value

optimizer AdamW
learning rate 1× 10−4

batch size 16
weight decay 0.05
optimizer momentum β1, β2=0.9,0.999
training iterations 38.4K
drop path 0.1

Table 9. Fine-tuning on NYUv2 depth estimation.
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