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We begin this supplementary document by report-
ing per-scene rendering results of Gear-NeRF compared to
competing methods, both qualitatively and quantitatively.
In Section B, we present performance comparisons for the
task of tracking in novel views, a new contribution of this
work, and compare against baselines adapted for this task.
We then present additional ablation studies, discussing the
sensitivity of our method to the choice of appropriate hyper-
parameters in Section C. Besides, we provide a video show-
ing results for dynamic novel view rendering and tracking.

The following summarizes the supplementary materials
we present:
1. Per-Scene Rendering Results.
2. Novel-view Tracking Results.
3. Additional Ablation Studies.
4. Discussions on Training and Rendering Efficiency.
5. A video showing novel view rendering and tracking in

dynamic scenes using Gear-NeRF and other competing
methods on different datasets, compiled together in sup-
plementary video.mp4.

A. Per-Scene Rendering Results

In this section, we present a quantitative evaluation of Gear-
NeRF and competing techniques for the task of rendering
dynamic scenes from novel views, on a per-scene basis
for each of the three datasets we conduct experiments on:
(i) The Technicolor Lightfield Dataset [8] (ii) The Neural
3D Video Dataset [7], and the (iii) The Google Immersive
Dataset [2]. Moreover, to further demonstrate the generaliz-
ability of our method vis-á-vis our closest competing base-
line, HyperReel [1], we report its performance versus that of
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our method on some additional sequences for each of these
three datasets.

Table A, Table B, and Table C show per-scene quanti-
tative comparison results of our approach against compet-
ing methods on the Technicolor dataset [8], the Neural 3D
Video dataset [7], and the Google Immersive dataset [2],
respectively. The averaged results are presented in Table
1 of the paper and are derived from these per-scene re-
sults. We see that in all but a couple of sequences (“Cut
Roasted Beef” from the Neural 3D video dataset oe “The-
ater” from the Technicolor dataset) our proposed approach
outperforms all other competing methods, across all the
metrics, attesting to the effectiveness of our method. Even

Table A. Per-scene quantitative comparisons for the task of
novel view synthesis for dynamic scenes on the Technicolor
dataset [8]. Best and second best results are highlighted.

Scene Method PSNR (↑) SSIM (↑) LPIPS (↓)

Train

ST-NeRF [11] 29.16 0.877 0.070
HyperReel [1] 29.18 0.894 0.054
MixVoxels [9] 27.34 0.830 0.058
Ours 30.55 0.957 0.049

Theater

ST-NeRF [11] 31.57 0.866 0.133
HyperReel [1] 31.69 0.863 0.131
MixVoxels [9] 27.34 0.888 0.134
Ours 32.56 0.887 0.067

Painter

ST-NeRF [11] 35.14 0.911 0.102
HyperReel [1] 35.38 0.916 0.091
MixVoxels [9] 34.18 0.900 0.076
Ours 36.35 0.928 0.073

Birthday

ST-NeRF [11] 27.55 0.877 0.097
HyperReel [1] 27.91 0.873 0.090
MixVoxels [9] 27.11 0.749 0.142
Ours 29.38 0.904 0.041
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Figure A. Qualitative comparisons of competing methods for the task of novel view synthesis of some additional dynamic scenes for
the Google Immersive [2] (top row) and the Neural 3D Video [7] (bottom row) datasets.
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Figure B. Qualitative comparisons of click-based novel-view
tracking of our method versus SAM-Track [5].

under occasional circumstances when that is not the case,
our method still reports performance comparable to Hyper-
Reel. Figure A presents qualitative comparisons of ren-
dering results, by our method and HyperReel for some se-
quences from the Google Immersive [2] and the Neural 3D
Video [7] datasets. As is evident from the figure, the frames
synthesized by our method look less blurry and better pre-
serves the details (for instance the eye of the lady, the flame,
the stem of the glass, or the glasses of the man with the hat)
which underscores the effectiveness of our method. More
qualitative results can be seen in the attached video.
Non-Lambertian Surfaces: While non-Lambertian sur-
faces are known to pose challenges for rendering, we ob-
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Figure C. Gear selection and rendering of non-Lambertian ob-
jects.

serve that they don’t undermine the gear selection, perhaps
due to object priors from SAM. E.g. the car in the scene in
Figure C includes reflective surfaces, like windshield yet it
is assigned the right gear with its details better reconstructed
than competing methods.

B. Novel-View Tracking Results
Being the first method to achieve free-viewpoint tracking of
target objects in the NeRF setting, our approach does not
have direct baselines, to the best of our knowledge. Hence,
we use the following as baselines for benchmarking: (i) The
static scene segmentation approach, SA3D [4] mentioned in
Section 5 of the main paper. (ii) We also compare against a
monocular video tracking baseline called SAM-Track [5] –
a method based on SAM [6] for object tracking in monoc-
ular videos. Since SAM-Track only takes a monocular
video as input and does not consider the 3D information,
we adopted the following procedure to use it as a baseline:
Given user-provided click(s) in an input view, we utilize our
radiance field representation to map these clicks to a desired
target/novel view. SAM-Track can then be used to perform
object tracking in the target view using the mapped click(s)
as prompts. As the quantitative results in Table D indicate,
our method outperforms SAM-Track across all metrics on
all datasets for the task of desired novel/target view object
tracking. This may be attributed to our method’s capability
of learning the semantics of the scene by leveraging the 4D
SAM embedding field. A rendered SAM feature map is fed
into the SAM decoder to obtain the mask of the target ob-



Table B. Per-scene quantitative comparisons for the task of
novel view synthesis for dynamic scenes on the Google Immer-
sive dataset [2]. Best and second best results are highlighted.

Scene Method PSNR (↑) SSIM (↑) LPIPS (↓)

Flames

HexPlane [3] 29.31 0.808 0.189
HyperReel [1] 29.66 0.895 0.129
MixVoxels [9] 29.01 0.819 0.180
Ours 30.87 0.903 0.120

Truck

HexPlane [3] 26.89 0.819 0.161
HyperReel [1] 27.20 0.850 0.153
MixVoxels [9] 26.59 0.877 0.194
Ours 27.46 0.892 0.136

Horse

HexPlane [3] 28.45 0.887 0.121
HyperReel [1] 28.56 0.892 0.114
MixVoxels [9] 28.13 0.773 0.190
Ours 29.05 0.895 0.110

Car

HexPlane [3] 24.13 0.719 0.261
HyperReel [1] 24.58 0.740 0.215
MixVoxels [9] 24.37 0.724 0.249
Ours 25.12 0.783 0.179

Welder

HexPlane [3] 25.89 0.778 0.250
HyperReel [1] 26.07 0.793 0.220
MixVoxels [9] 24.59 0.818 0.277
Ours 26.36 0.810 0.187

Exhibit

HexPlane [3] 29.93 0.874 0.159
HyperReel [1] 31.53 0.907 0.090
MixVoxels [9] 28.35 0.915 0.148
Ours 31.73 0.920 0.064

Face Paint 1

HexPlane [3] 28.48 0.841 0.169
HyperReel [1] 29.83 0.922 0.093
MixVoxels [9] 27.84 0.847 0.185
Ours 29.15 0.901 0.082

Face Paint 2

HexPlane [3] 28.58 0.833 0.148
HyperReel [1] 28.94 0.893 0.106
MixVoxels [9] 27.50 0.849 0.231
Ours 29.24 0.903 0.076

Cave

HexPlane [3] 27.35 0.715 0.231
HyperReel [1] 28.48 0.867 0.184
MixVoxels [9] 27.93 0.894 0.224
Ours 29.68 0.880 0.144

ject at every time step. In contrast, SAM-Track uses SAM
to acquire the object mask only for the first frame and em-
ploys a mask tracker [10] to obtain masks for subsequent
time steps. This is also demonstrated in Figure B where our
approach better renders the scene without introducing arti-
facts as opposed to SAM-Track. More qualitative results
can be seen in the attached video.

Table E reveals that our approach better segments the
target object, given a rendered frame, as compared to
SA3D [4]. We attribute this gain to the fact that our method
unlike SA3D reasons about the temporal dynamics of the
scene and can thus better assess/predict the location of the
target object.

Table C. Per-scene quantitative comparisons for the task of
novel view synthesis for dynamic scenes on the Neural 3D
Video [7]. Best and second best results are highlighted.

Scene Method PSNR (↑) SSIM (↑) LPIPS (↓)

Cut Roasted Beef

ST-NeRF [11] 32.97 0.950 0.047
HyperReel [1] 32.63 0.942 0.049
MixVoxels [9] 32.34 0.962 0.138
Ours 32.74 0.944 0.057

Coffee Martini

ST-NeRF [11] 29.18 0.904 0.102
HyperReel [1] 28.43 0.896 0.090
MixVoxels [9] 28.08 0.901 0.079
Ours 29.71 0.918 0.070

Flame Steak

ST-NeRF [11] 31.75 0.903 0.061
HyperReel [1] 32.49 0.946 0.051
MixVoxels [9] 31.54 0.946 0.133
Ours 33.20 0.952 0.045

Cook Spinach

ST-NeRF [11] 32.84 0.942 0.049
HyperReel [1] 32.56 0.940 0.056
MixVoxels [9] 31.71 0.960 0.144
Ours 33.18 0.946 0.046

Flame Salmon

ST-NeRF [11] 27.74 0.781 0.132
HyperReel [1] 28.03 0.891 0.100
MixVoxels [9] 28.88 0.930 0.212
Ours 29.66 0.912 0.073

Sear Steak

ST-NeRF [11] 31.72 0.862 0.094
HyperReel [1] 32.58 0.951 0.046
MixVoxels [9] 31.60 0.967 0.128
Ours 32.31 0.942 0.054

Table D. Quantitative comparisons for fixed novel view track-
ing versus SAM-Track [5].

Dataset Method mIoU Accuracy

Technicolor [8] SAM-Track [5] 95.6 96.1
Ours 96.0 96.9

Neural 3D Video [7] SAM-Track [5] 94.1 94.5
Ours 95.1 95.5

Google Immersive [2] SAM-Track [5] 93.4 94.0
Ours 95.7 96.3

Table E. Quantitative comparisons for free-viewpoint track-
ing: t-mIoU and t-Acc are metrics used for evaluating novel view
masks at novel time steps, not applicable to SA3D. Reported met-
rics are averages over all scenes for each dataset.

Dataset Method mIoU (↑) Acc. (↑) t-mIoU (↑) t-Acc. (↑)

Technicolor [8] SA3D [4] 96.4 97.1 N/A N/A
Ours 97.4 97.6 92.1 93.3

Google Immersive [2] SA3D [4] 94.1 94.8 N/A N/A
Ours 94.3 95.0 91.5 92.8

Neural 3D Video [7] SA3D [4] 93.1 94.0 N/A N/A
Ours 93.4 94.3 90.6 92.3



Table F. Ablation study on the top-k selection in gear assign-
ment. Best and second best results are highlighted.

Method PSNR (↑) SSIM (↑) LPIPS (↓)

Ours (k = 1) 27.10 0.879 0.139
Ours (k = 2) 27.43 0.890 0.145
Ours (k = 3) 27.49 0.892 0.136
Ours (k = 4) 26.14 0.777 0.158
Ours (k = 5) 26.39 0.790 0.161

Table G. Ablation Study on the point splitting strategy in
motion-aware spatial sampling. Best and second best results are
highlighted.

Method PSNR (↑) SSIM (↑) LPIPS (↓)

Ours (2p(x,t)−1) 27.49 0.892 0.136
Ours (3p(x,t)−1) 27.98 0.914 0.125
Ours (2p(x, t)− 1) 26.46 0.815 0.140

C. Additional Ablation Studies

In this section, we present some additional ablation results
on the hyper-parameters of our model.

Top-k in Gear Assignment Updates: For gear assignment
updates, we employ a patch-based approach to identify re-
gions with the top-k highest or lowest average rendering
loss to obtain positive or negative prompts for subsequent
steps. We perform an ablation study on the Truck scene
of the Google Immersive dataset [2]. Table F reveals that
both excessively high or low values of k do not yield opti-
mal performance. We note that a selection of k = 4 or 5
leads to gear upshifts for inappropriate regions, weakening
the efficacy of our motion-aware spatio-temporal sampling
strategy. In our experiments, we uniformly applied k = 3
across all scenes, which yielded satisfactory results.

Sampling Point Splitting: In our motion-aware spatial
sampling, we adopt a 3D sampling point-splitting strategy.
Specifically, we split each sampled 3D point into 2p(x,t)−1

points. We conduct an ablation study on the number of
points a sampling point is split into. To elaborate, in ad-
dition to splitting one point into 2p(x,t)−1 points, we ex-
plore variants, including splitting into 3p(x,t)−1 points and
2p(x, t) − 1 points, on the Truck scene of the Google Im-
mersive dataset [2]. As shown in Table G, the additional
sampling points generated by the 2p(x, t) − 1 strategy are
insufficient, resulting in a decrease in rendering quality. In
contrast, 3p(x,t)−1 achieves better quality than 2p(x,t)−1.
However, an excessive number of sampling points leads to
a reduction in training speed, while providing a marginal
performance boost, which is why we stick with the strategy
of splitting into 2p(x,t)−1 points.
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