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1. Overview

To make our GenN2N self-contained, we provide more de-

tails in this document, including:

* More details about our method, including 2D image-to-
image translator used in our pipeline and the architecture
details of our translated NeRF.

* Detailed settings of our experiments, including datasets
settings and implementation details.

* More insight experiments of our method, including qual-
ity verification of our generation space, comparisons with
naive altering parameters in InstructNeRF2NeRF, inter-
polation of the edit code, and ablation study on hyperpa-
rameter M.

* Additional experiment results, including more qualitative
and quantitative results and additional applications of our
GenN2N.

2. Method Details
2.1. 2D image-to-image Translator

In our proposed GenN2N, we use plug-and-play image-to-
image translators to perform editing on the 2D domain and
optimize the translated NeRF to lift these 2D edits into the
3D NeRF space. Note that the 2D translator in our pipeline
can be changed to support various of NeRF editing tasks,
here for convenience of comparing our method with exist-
ing task-specific NeRF editing baselines, we different 2D
translators to achieve corresponding editing tasks as fol-
lows:
 Text-driven Editing. To achieve NeRF editing under text
instructions, we use InstructPix2Pix [2] as the 2D image-
to-image translator in our framework. InstructPix2Pix
is a diffusion-based method designed for image editing
according to user-provided instructions. Specifically, In-
structPix2Pix learns a U-Net to perform denoise diffusion
to generate the target edited image based on the given im-
age and the text embedding. While InstructPix2Pix can
produce high-quality editing results that highly align with

Corresponding authors.

the input instructions, given different initial noise or in-
put image, different content may be generated during the
editing process of InstructPix2Pix, which makes it diffi-
cult to ensure the 3D consistency in the text-driven NeRF
Editing process.

Super-resolution. For the NeRF super-resolution task,
we choose ResShift [20] instead of InstructPix2Pix [2] as
the 2D image-to-image translator in GenN2N due to the
unrobustness of InstructPix2Pix [2] in the super-resoluion
task. ResShift [20] is the current state-of-the-art im-
age super-resolution method designed based on diffu-
sion model. With dedicated designs for image super-
resolution, such as the residual shifting mechanism and
the flexible noise schedule, ResShift [20] can produce
super-resolution images with high-quality. Thus, given
a set of multi-view images of a NeRF scene, we directly
use ResShift [20] to increase the resolution of all these
images by the same factor of x4 as NeRF-SR [16].
Inpainting. For the task of inpainting in NeRF, we aim
to replace a certain region in a 3D scene, usually an
object, and keep painted contents visually plausible and
consistent with the remained context. Following SPIn-
NeRF [12], we use LaMa [14] as our 2D image-to-image
translator. The input of LaMa is an image and a binary
mask that indicates the region to paint. We support var-
ious ways to get a mask, but note that multi-view masks
must correspond to the same location in the 3D scene.
For example, by artificially calculating the position of the
part to paint in the 3D scene corresponding to the 2D im-
age, or using the segment anything model [7] to get the
mask of the same object. Based on these masked images,
LaMa can successfully generate contents in the desired
region that remain close to the input image with plausible
3D appearance and geometry.

Colorization. To achieve 3D NeRF colorization, we use
DDColor [6] as our plug-and-play 2D image-to-image
translaton. Specifically, given a set of gray-scale multi-
view images of a NeRF scene, we use DDColor [6] to
produce RGB color of each image. While high-quality
colorization results can be obtained for each image us-
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Figure 1. Detailed structure of the translated NeRF. Given a
pre-trained NeRF model, we concatenate our edit code z with its
intermediate features and produce the density o and RGB color
with two additional MLP networks. In this way, our translated
NeRF is optimized to render the translated 3D scene conditioned
on the edit code z.

ing DDColor [6], different image may be assigned with
different color style, which makes it difficult to gener-
ate consistent 3D colorization results. However, GenN2N
successfully models the diverse results of colorization in
the generated space, and each translated NeRF achieves a
high degree of 3D consistency.

2.2. Network Architecture

After 2D image editing, we then achieve NeRF editing in
3D domain by performing optimization of our translated
NeRF using our well-designed loss functions. During the
optimization process, we use our latent distil module to ex-
tract a latent code named edit code z from each edited 2D
image. Specifically, we employ the off-the-shelf VAE en-
coder from stable diffusion [13] to extract the feature from
the edited 2D image and then apply a tiny MLP network to
produce this edit code z € R5%. Just like a conventional
variational encoder, this tiny MLP network is used to esti-
mate the mean and variance of a Gaussian distribution and
sample the edit code from it. This tiny MLP network only
contains three layers. After extraction of the edit code z,
we then render novel views conditioned on the edit code us-
ing our translated NeRF. In Fig 1, we provide the detailed
structure of the translated NeRF. Our main purpose of this
design is to make the translated NeRF render 3D scenes
conditioned on the edit code z. As such, the diversity of ed-
its from 2D image-to-image translator can be modeled and
represented by a Gaussian distribution of the edit code z.
Given a pre-trained original NeRF, we discard its two lay-
ers used for density and color estimation. The edit code is
concatenated with the intermediate features of the original
NeRF and and then fed into two additional MLP networks
to obtain the density o and RGB color for volume render-
ing. During the optimization process of our GenN2N, the
original NeRF parameters except the discared parameters
are updated, as well as the newly added MLP networks.

3. Experiment Settings
3.1. Datasets and Evaluation Metrics

Our GenN2N is a unified NeRF-to-NeRF translation frame-
work for various NeRF translation tasks such as text-driven
NeRF editing, colorization, super-resolution, inpainting,
etc. To verify the effectiveness of our GenN2N, we con-
duct extensive experiments on various dataset and scenes to
compare our GenN2N with existing task-specific special-
ists, such as Instruct-NeRF2NeRF [4], Palette-NeRF [8],
NeRF-SR [16] and SPIn-NeRF [12].

For text-driven NeRF editing, we compare our method
with existing methods Instruct-NeRF2NeRF [4] on por-
trait datasets the face dataset [4], the Fangzhou self-portrait
dataset [17] and the Farm and Campsite dataset [4]. The
Face dataset [4] comprises 65 images capturing different
views of a single person captured by a smartphone. The
camera poses are extracted by using the PolyCam app. The
Fangzhou self-portrait dataset [17] is collected from users
utilizing a front-facing camera, resulting in a total of 100
frames. The Farm and Campsite dataset [4] consists of out-
door 360-degree scenes captured by a camera, containing
250 frames in total, and we only use the former 100 frames
for data efficiency. We choose metrics CLIP Text-Image Di-
rection Similarity [4] and CLIP Direction Consistency [4]
reported in Instruct-NeRF2NeRF to evaluate editing qual-
ity, coupled with Fréchet Inception Distance (FID) [5] to
measure generative diversity. More specifically, the refer-
ence distribution used for calculating FID is the distribu-
tion of 2D edit images, such as InstructPix2Pix [2] editing
results in the text-driven editing task. We employ FID to
assess how closely our generated results align with the ref-
erence distribution.

For colorization, the LLFF dataset [11] for quantitative
comparison consists of three large-scale outdoor scenes and
five indoor scenes. We also select part of the BlendedMVS
dataset [18] for more qulitative results, which covers a vari-
ety of scenarios, including cities, buildings, sculptures, and
small objects. Following 2D colorization method [6], we
use colorfulness score (CF) [9] to measure the richness of
color in rgb form and vividness of colorized images.

For NeRF super-resolution, we follow the existing meth-
ods NeRF-SR [16] to build high-resolution NeRF with
training images down-scaled by x4. We conduct the com-
parison with the same datasets, i.e., LLFF dataset [11]
mentioned previously and the Realistic Synthetic 360°
dataset [10] containing 8 synthetic objects with 100 im-
ages. We employ the same metrics as NeRF-SR [16]: Peak
Signal-to-Noise Ratio (PSNR), Structural Similarity Index
Measure (SSIM) and Learned Perceptual Image Patch Sim-
ilarity (LPIPS).

For inpainting, existing methods SPIn-NeRF [12] and
OR-NeRF [19] conducted comparative experiments on their



customized dataset [12] of 10 outdoor scenes, including 60
training images with the object and 40 test images without
the object for each scene. For fair comparison, we follow
these existing methods and also choose the same dataset as
well as a statue dataset [12] to train our model and compute
test metrics of Peak Signal-to-Noise Ratio (PSNR), Struc-
tural Similarity Index Measure (SSIM) and Learned Percep-
tual Image Patch Similarity (LPIPS) on the same test views
as previous methods.

3.2. Implementation Details

In our pipeline, we first perform 2D image-to-image trans-
lation and then lift those 2D edits up to 3D domain using
our well-designed framework. Note that in our GenN2N,
we can flexibly choose a different plug-and-play 2D editor
to support various NeRF editing task.

For text-driven NeRF editing, we leverage Instruct-
Pix2Pix [2] as the 2D image-to-image translator to gen-
erate per-frame edited images corresponding to the uni-
fied text prompt. During this step, we follow Instruct-
NeRF2NeRF [4] to randomly select the image similarity
degree St from {0.5,2.5}, and text similarity degree St
from {6.0,8.5}, producing edited images with significant
diversities under the same text prompt.

After 2D editing, we then perform NeRF editing using
our well-designed models and loss functions. We imple-
ment all our GenN2N based on PyTorch. Follow Instruct-
NeRF2NeRF [4], we use the original NeRF trained by using
NeRFStudio [15] on the original scene. Then we modify the
original NeRF model as our translated NeRF as described
in Sec. 2.2. During the training phase, we efficiently sam-
ple one image per iteration and extract 16, 384 rays with
48 points per ray in a batch. Our model is trained using
Adam optimizer with a learning rate of 1le — 2, running for
10,000 — 20, 000 iterations per scene. The total training
phase takes about 3 — 8 hours on one NVIDIA V100 GPU.
During the inference phase, we randomly sample z from
a standard Gaussian distribution and render the generated
edited NeRF from arbitrary viewpoints with corresponding
style defined by the sampled z. The inference time for a
translated NeRF need around 250ms. And the rendered time
for a 100-frame scene takes about 3 mins.

Notice that, our method is comparable with Instruct-
NeRF2NeRF [4] in training time, and is a lightweight feed-
forward model during inference without any heavy compo-
nents on one NVIDIA V100 GPU, as shown in Table 1.
Note that Instruct-NeRF2NeRF [4] does not have the infer-
ence phrase and requires retraining every time to get a new
result, and the diversity between different results is small.
In contrast, our method can directly perform forward infer-
ence by sampling different style codes to generate diverse
results.

Method "ljrain Inference
Time(h) Iteration Memory(GB) | FLOPs(G) Latency(s)

IN2N 2.67 20000 18.32 - -

Ours 3.47 10000 20.92 131 0.35

Table 1. Comparsion with Instruct-NeRF2NeRF [4] on computa-
tional intensity.

4. More Insight Experiments
4.1. Quality of the Generation Space

To validate the quality of our generation space, we con-
ducted an experiment as shown in Fig. 3, where we pro-
jected many of our generated results to all training view-
points (top) and performed image retrieval to find the clos-
est match in the training data (bottom). As illustrated in
Fig. 3, many of our generated results are not present in the
training data (InstructPix2Pix [2]), demonstrating that our
generation space is learned well.

4.2. Comparison with Naive Altering Instruct-
Pix2Pix Parameters in Instruct-NeRF2NeRF

We conducted this experiment as shown in Fig. 9, which
demonstrates that altering the sampling parameters of the
underlying 2D edit model cannot effectively increase diver-
sity in Instruct-NeRF2NeRF [4]. Instruct-NeRF2NeRF [4]
collapses on diversity due to two reasons. Firstly, the
conditioning of InstructPix2Pix [2] on the current NeRF
rendering significantly collapses the diversity of Instruct-
Pix2Pix [2]’s edit results, resulting in highly homogeneous
editing outcomes. Secondly, Instruct-NeRF2NeRF [4] can-
not ensure consistent edit directions during each iteration of
update and edit, resulting in an average edit mode.

4.3. Interpolation of the Edit Code

We randomly sample two edit code z; and z; from Gaus-
sian Distribution, and linearly interpolate nine latent code z
by z = a xz; + (1 — a) * z2. Then we use these latent
codes to directly inference the translated NeRFs. As shown
in Fig. 10, the rendering style of our translated NeRF model
is highly related to the edit code and the style changes lin-
early when the interpolation weight o changes linearly. And
the 3D view consistency of the rendering scene is always
maintained during the interpolation process.

4.4. Ablation on M

The number of edits per perspective M (default is 3) has lit-
tle impact on the results. As each edit for every viewpoint is
distinct, and we characterize this space by collectively uti-
lizing all edits from different views (around 100). While a
small M value can have an impact on the overall data vol-
ume, once it reaches a certain threshold (e.g. 3), the effect
is negligible, as shown in Table 2.
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Figure 2. Application of our GenN2N for NeRF zoom out. We crop the original scene (right) as the input (left) scene and perform zoom
out by our GenN2N. We show our rendered views with different edit codes (inference 1 — 4) in our inference stage. As can be seen, our
GenN2N can acheive NeRF zoom out application so as to enlarge the original input 3D scene by generating plausible content with 3D

geometry consistency.
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Figure 3. Image retrival results of our GenN2N for Text-driven NeRF Editing. We projected many of the generated results to all
training viewpoints (top), and then performed image retrieval to find the closest match in the training data generated by InstructPix2Pix [2]

(bottom).

5. More Applications

As we demonstrated before, we can achieve NeRF-to-NeRF
text-drive 3D editing, super-resolution, colorization, and
inpainting. To further demonstrate the versatility of our
framework, we also provide two applications, NeRF-to-
NeRF zoom out and text-driven inpainting, of our GenN2N
that have not been explored by previous methods.

5.1. Zoom Out of NeRF

Zoom out of NeRF is to extend an input NeRF along the in-
put region to enlarge the NeRF scene. Similar to inpainting,
we also use LaMa [14] as the 2D image-to-image translator
in our GenN2N to solve the NeRF zoom out problem. Given
source multi-view images of a 3D NeRF scene, we set the
zoom out ratio as 1.25 for image width and height to enlarge



CLIP Text-Image CLIP Direction
M Direction Similarity Consistency T FID |
M=1 0.2635 0.9610 123.505
M=3 0.2807 0.9650 91.823
M=5 0.2835 0.9638 86.377

Table 2. Ablation of M.

the source images. We first automatically generate binary
masks for the zoom out region and then employ LaMa [14]
to recover those zoom out regions. Since different content
may be generated for zoom out regions in different 2D im-
ages from different viewpoint, it is difficult to ensure the 3D
consistency in those zoom out regions. We show qualitative
results of our zoom out application in Fig. 2. As we can see
that our method can successfully ensure the 3D consistency
of those zoom out regions and generate reasonable NeRF
scenes.

5.2. Text-driven NeRF Inpainting

Text-driven NeRF Inpainting is similar to inpainting, but
with the added restriction of text instructions. For the text-
driven inpainting task, we use Blended Latent Diffusion [1]
as the 2D image-to-image translator, applying inpainting
with text instructions. We get the mask in the same way
mentioned in the inpainting task. Moreover, we found that if
the text prompt is not provided as a guidance, the diffusion
model tends to inpaint unreasonable content or monotonous
colors close to the surroundings, instead of drawing mean-
ingful objects. So we artificially set up the required text
prompt or used the visual question answering model [3] to
get answers to the “imagine what the white area might be”
question. For example, in this way, we can generate plau-
sible 2D content in the mask area with the guidance of text
instructions. After 2D editing, we then perform our pro-
posed optimization to obtain the translated 3D NeRF scene.
Qualitative results of our Text-driven NeRF inpainting re-
sults are shown in Fig. 4, where we can see that the area of
mask is filled with content that matched the description of
the text, such as various sunglasses.

6. Qualitative Results Gallery

We provide more qualitative in Fig 5, Fig. 6, Fig. 7, and
Fig. 8. For better visualization, we refer the reader to our
project page: https://xiangyueliu.github.io/
GenN2N/.

7. More Quantity Results

We provide more qualitative in Table 3 and Table 4. For
better visualization, we refer the reader to our project page.

o BN

Inference 2'

e = = A \al
Input Inference 1

Figure 4. Application of our GenN2N for text-driven inpaint-
ing. We use “sunglasses” as the text condition to guide the inpaint-
ing process.

CLIP Text-Image CLIP Direction

Method Direction Similarity? Consistency 1 FID |
Instruct-NeRF2NeRF[4] 0.1383 0.9624 101.219
Ours 0.1583 0.9683 93.688

Table 3. More quantitative results on text-driven editing. We
compare our method with the state-of-the-art method Instruct-
NeRF2NeRF [4] with metrics reported in the latter. Following
Instruct-NeRF2NeRF [4], we conduct quantitative evaluation on
bear dataset with 3 editing prompts and face dataset with 7 editing
prompts.

Method CF 1
PaletteNeRF[§] 58.065
Ours 75.960

Table 4. More quantitative results on colorization. We com-
pare our method with the state-of-the-art method PaletteNeRF [8].
Since the latter does not provide an appropriate metric for com-
parison, we use colorfulness score (CF) [9] to measure the vivid-
ness of colorized images. We choose the dataset used by Palet-
teNeRF [8], namely, Fern, Horns, Flower and Orchids from the
forward-facing LLFF dataset [11].
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Figure 5. Qualitative results for Text-driven Editing. We show the original 3D scene (left), our inference results (right) with different
edit codes to show the diversity ability of our method. We can see that under different edit code, the edited scene with different styles can
be rendered with plausible 3D geometry consistency.
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Figure 6. Qualitative results for NeRF colorization. For each scene, we show two views of the input gray-scale scene (left), five of our
inference edited NeRF rendering results from different edit code (middle), and the Ground-truth scene (right). As can be seen, our GenN2N
can produce plausible colorization results while maintaining the 3D multi-view consistency.
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Figure 7. Qualitative results for NeRF super-resolution. We show the original low-resolution input (left), our super-resolution result
(middle) and the ground-truth (right) all with their zoom in results for better visualization.
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Figure 8. Qualitative results for NeRF inapinting. We highlight the removed objects and our inpainting regions using the red boxes.
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Figure 9. Diversity and view consistency comparisons of our GenN2N with existing methods. The same text instruction of “Turn him
into the Tolkien EIf” is used for all the methods. As can be seen, InstructPix2Pix [2] can produce diverse results in 2D but 3D multi-view
consistency is not ensured. Though Instruct-NeRF2NeRF [4] can ensure the multi-view consistency, its results show little variance. In

contrast, our GenN2N can produce diverse editing results and address the 3D geometry consistency at the same time.
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Figure 10. Interpolation of the edit code. We render the same views using the edit code z produced by interpolation of two random
sampled edit code z; and z2 by: z = a *x 21 + (1 — «) * z2. As can be seen, the rendering style of our translated NeRF model is highly
related to the edit code and the style changes linearly when the interpolation weight o changes linearly. Note that, the 3D view consistency
of the rendering scene is always maintained during the interpolation process.
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