
Geometry-aware Reconstruction and Fusion-refined Rendering
for Generalizable Neural Radiance Fields

(Supplementary Material)

Tianqi Liu Xinyi Ye Min Shi Zihao Huang Zhiyu Pan Zhan Peng Zhiguo Cao*

School of Artificial Intelligence and Automation,
Huazhong University of Science and Technology, Wuhan 430074, China

{tq liu,xinyiye,min shi,zihaohuang,zhiyupan,peng zhan,zgcao}@hust.edu.cn

S1. Implementation and Network Details

Implementation Details. Our generalizable model is
trained on four RTX 3090 GPUs using the Adam [9] op-
timizer, with an initial learning rate of 5e− 4. The learning
rate is halved every 50k iterations. As shown in Fig. S1,
we present the metrics of the DTU test set [1] varying
with the number of iterations. The model tends to con-
verge after approximately 150k iterations, taking about 25
hours. It is worth noting that, with only 8k iterations,
our model can achieve metrics of 27.68/0.961/0.080, sur-
passing the metrics of the SOTA method [10], which is
27.61/0.956/0.091 (PSNR/SSIM [17]/LPIPS [20]). Fol-
lowing ENeRF [10], during training, we select 2, 3, and
4 source views as inputs with probabilities of 0.1, 0.8, and
0.1. To save computational costs, the Consistency-aware
Fusion (CAF) is exclusively employed in the fine stage,
while in the coarse stage, a blending approach is used to
synthesize a low-resolution target view, supervised by the
ground-truth target view. During training, the final tar-
get view is generated by fusing two intermediate views as
It = WbIb + WrIr. However, during evaluation for other
datasets [12, 13], which have a different domain compared
with DTU, increasing the weights of Ib can lead to slightly
better performance. Therefore, we obtain the final view as
It = (Ib+(WbIb+WrIr))/2. Our evaluation setup is con-
sistent with ENeRF [10] and MVSNeRF [3]. The results of
the DTU test set are evaluated using segmentation masks.
The segmentation mask is defined based on the availability
of ground-truth depth at each pixel. Since the marginal re-
gion of images is typically invisible to input images on the
Real Forward-facing dataset [12], we evaluate the 80% area
in the center of the images. Incidentally, all the inference
time presented in Fig. 1 of the main text is measured at an
input image resolution of 512 × 640. The number of our
model’s parameters is 3.15M.

*Corresponding author

Input Operation Output

(C,D,H,W) permute (D,C,H,W)
(D,C,H,W) cgr(C,Ch) (D,Ch,H,W)

(D,Ch,H,W) cgr(Ch,Ch) (D,Ch,H,W)
(D,Ch,H,W) conv2d(Ch,1) (D,1,H,W)
(D,1,H,W) sigmoid (D,1,H,W)
(D,1,H,W) permute (1,D,H,W)

Table S1. The network architecture of Adaptive Cost Aggre-
gation (ACA). The cgr represents a block composed of conv2d,
groupnorm, and relu. In our implementation, C = 16 and Ch = 4.

Network Details. Here, we will introduce the network de-
tails of the pooling network (Sec. 4.2) and ACA (Sec. 4.1)
mentioned in the main text.

Pooling network. [10, 15] apply a pooling network ρ
to aggregate multi-view features to obtain the descriptor via
fp = ρ({f i

s}Ni=1). The implementation details are as fol-
lows: initially, the mean µ and variance v of {f i

s}Ni=1 are
computed. Subsequently, µ and v are concatenated with
each f i

s and an MLP is applied to generate a weight. The
fp is blended via a soft-argmax operator using obtained
weights and multi-view features ({f i

s}Ni=1).
ACA. Per the Eq. (4) in the main text, α(.) represents the

adaptive weight for each view, and the network architecture
that learns these weights is shown in Table S1.

Inference Speed. For an image with 512×640 resolution,
the inference time of our method is 143ms. We decompose
the inference time in Table S2 and results demonstrate that
the inference time of our modules is only 71ms, with the
remaining 72ms spent saving results.

S2. Additional ablation experiments
Numbers of Views. As shown in Table S3, we evaluate
the performance of our trained generalization model and

1



0.05

0.07

0.09

0.11

0.13

0.15

0 50 100 150 200 250
iterations(k)

lpips

22

24

26

28

30

0 50 100 150 200 250
iterations(k)

psnr

0.915

0.93

0.945

0.96

0.975

0 50 100 150 200 250
iterations(k)

ssim

Figure S1. The metrics of the DTU test set vary with the number of iterations.

Modules coarse stage fine stage

feature extractor 1.32

build rays 9.11 15.94

geometry cost volume 7.48 8.24
regularization 1.91 1.97

descriptor
pooling ρ 0.57 0.50
SVAsm 1.74 1.37
SVAd 0.73 1.01

view decoding 1.62 17.80

save in dictionary 13.27 58.31

Table S2. Time overhead for each module (in milliseconds).
The term “save in dictionary” refers to storing tensor results in
dictionary form for subsequent evaluation of various metrics.

ENeRF [10] with different numbers of input views on the
DTU test set [1]. With an increase in the number of input
views, the performance improves as the model can leverage
more multi-view information. In terms of both overall per-
formance and the magnitude of performance improvement,
our method outperforms ENeRF, indicating its superior ca-
pability in leveraging multi-view information for recon-
structing scene geometry and rendering novel views. Ad-
ditionally, we also present the performance of our method
on the Real Forward-facing [12] and NeRF Synthetic [13]
datasets under different numbers of input views, as shown
in Table S4. The results demonstrate the same trend, indi-
cating the capability of our model in leveraging multi-view
information is generalizable.

Features for Intermediate Views. In Sec. 4.3 of the main
text, fb and fr are utilized as the feature representations for
the two intermediate views Ib and Ir, respectively. Subse-
quently, their consistency with source views is individually
computed to learn fusion weights. The choice of using fb as
the feature for Ib is based on their similar volume rendering
generation manners, while the selection of fr as the feature
for Ir is driven by their direct projection relationship. Here,
we will discuss different selection strategies for the features
of intermediate views. An alternative approach for the fea-
tures of Ib is to blend features from source views. Similar
to Eq. (2) in the main text, the calculation of the features fb

for Ib is as follows:

fb =

N∑
i=1

exp(wi)f
i
s∑N

j=1 exp(wj)
, (S1)

where wi = MLP(x, d, fp, f i
s), f i

s is the feature of the
source image Iis. x and d represent the coordinate and view
direction, respectively. fp is the descriptor for 3D point.
Another more intuitive alternative is to use a feature extrac-
tor to extract features for both intermediate views, as:

F[b,r] = ϕeI[b,r] , (S2)

where ϕe represents a feature extractor, instantiated as a 2D
U-Net. fb and fr are the pixel-wise features of Fb and Fr,
respectively. As shown in Table S5, the strategy employed
in the main text is slightly superior to the other two alter-
native strategies. For the first alternative Eq. (S1), fb is ob-
tained by blending features from source views. fb lacks 3D
context awareness, leading to some information loss in the
subsequently accumulated pixel features. For the second
alternative Eq. (S2), fb and fr are extracted from scratch at
the RGB level. This practice is disadvantageous for the sub-
sequent learning of 3D consistency weights, due to the lack
of utilization of 3D information. Additionally, the introduc-
tion of a feature extractor also increases the burden on the
model. However, the strategy in the main text maximally
utilizes the obtained 3D-aware descriptors, while also hav-
ing the smallest computational cost compared to the other
two alternative approaches.

Intermediate View Supervision. In the main text, we
only supervise the images fused through CAF. However,
simultaneously supervising intermediate results is also a
common practice, whose final result is 29.15/0.968/0.065.
This result is slightly inferior to supervising only the fused
view (29.36/0.969/0.064). Because each of the two inter-
mediate views has its own advantages, supervising only the
fused view allows the network to focus on the fusion pro-
cess, leveraging the strengths of both. However, simulta-
neously supervising the intermediate views burdens the net-
work, diminishing its attention to the fusion process. In the-
ory, if both intermediate views are entirely correct, the final



Views PSNR↑ SSIM↑ LPIPS↓ Abs err↓ Acc(2)↑ Acc(10)↑
2 26.98 / 25.48 0.955 / 0.942 0.081 / 0.107 3.86 / 5.53 0.835 / 0.756 0.942 / 0.107
3 29.36 / 27.61 0.969 / 0.956 0.064 / 0.091 2.83 / 4.60 0.879 / 0.792 0.961 / 0.917
4 29.77 / 27.73 0.971 / 0.959 0.062 / 0.089 2.73 / 4.26 0.880 / 0.804 0.961 / 0.929
5 29.91 / 27.54 0.971 / 0.958 0.062 / 0.091 2.69 / 4.29 0.882 / 0.800 0.961 / 0.928

Table S3. The performance of our method and ENeRF with different numbers of input views on the DTU test set. Each item
represents (Ours/ENeRF’s). “Abs err” denotes the average absolute error and “Acc(X)” means the percentage of pixels with an error less
than X mm.

Views Real Forward-facing [12] NeRF Synthetic [13]

PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓
2 23.39 0.839 0.176 25.30 0.939 0.082
3 24.28 0.863 0.162 26.99 0.952 0.070
4 24.91 0.876 0.157 27.31 0.953 0.069

Table S4. The performance of our method with varying num-
bers of input views on the Real Forward-facing and NeRF Syn-
thetic datasets.

PSNR↑ SSIM↑ LPIPS↓
No.1 29.36 0.969 0.064
No.2 29.24 0.969 0.065
No.3 29.08 0.968 0.066

Table S5. Different strategies for the features of intermediate
views. No.1 represents the strategy in the main text. No.2 rep-
resents the strategy using Eq. (S1). No.3 represents the strategy
using Eq. (S2).

Depth PSNR↑ SSIM↑ LPIPS↓ Abs err↓ Acc(2)↑ Acc(10)↑
Self-supervision 29.21 0.968 0.064 3.21 0.873 0.957

Supervision 29.31 0.969 0.064 2.95 0.875 0.957
None 29.36 0.969 0.064 2.83 0.879 0.961

Table S6. The comparison of different depth supervision sig-
nals. The self-supervision represents using unsupervised depth
loss and the supervision represents using ground-truth depth for
supervision. The term “None” refers to training without any depth
supervision signals.

fused view will be accurate regardless of the fusion process.
The network prioritizes predicting two accurate intermedi-
ate views, which is a more challenging task.

Depth Supervision. A critical factor in the model’s syn-
thesis of high-quality views is its perception of the scene
geometry. MVS-based generalizable NeRF methods [3, 10,
11], including our method, aim to improve the quality of
view synthesis by enhancing the geometry prediction. By
only supervising RGB images, excellent geometry predic-
tions can be achieved (Sec. 5.4 in the main text). Here,

we will discuss the impact of incorporating depth supervi-
sion signals on the model. We introduce supervision signals
for depth in two ways: one through self-supervised and the
other through supervision using ground-truth depth.

Following [2, 8], the unsupervised depth loss is:

Ld = β1LPC + β2LSSIM + β3LSmooth , (S3)

where LPC represents the photometric consistency loss.
LSSIM and LSmooth are the structured similarity loss and
depth smoothness loss, respectively. β1, β2, and β3 are set
to 12, 6, and 0.18 in our implementation, respectively. Refer
to [2, 8] for more details. Ld is used to supervise the final
depth, i.e., df (Sec. 4.3 in the main text). Since the DTU
dataset provides ground-truth depth, another approach is to
utilize the ground-truth depth for supervision. The depth
loss is as follows:

Ld = ξ(df , dgt) (S4)

where df and dgt represent the final predicted and ground-
truth depth, respectively. ξ denotes a loss function. Fol-
lowing [6], ξ is instantiated as the Smooth L1 loss [5]. The
quantitative results are presented in the Table S6. The per-
formance of the three strategies in the table is comparable,
indicating that supervising only the RGB images is suffi-
cient, and there is no need for additional introduction of
depth supervision signals.

More Comprehensive Depth Analysis. As shown in
Fig. 3 in the main text, our pipeline first infers the geom-
etry from the cost volume, re-samples 3D points around ob-
jects’ surfaces, and finally encodes 3D descriptors for ren-
dering. We can obtain two depths: one inferred from the
cost volume and the other obtained through volume render-
ing, which is the final depth. Here, we report the depth
obtained from the cost volume and the final depth as shown
in Table S7. Compared to the baseline, our method per-
forms better on both depth metrics. Thanks to Adaptive
Cost Aggregation (ACA), the depth obtained from the cost
volume has been significantly improved. Based on this, as
the Spatial-View Aggregator (SVA) encodes 3D-aware de-
scriptors, the final depth has also been further improved. In



Source Image 1 Source Image 2 Source Image 3

Ground Truth

Weight 1 Weight 2 Weight 3 

Figure S2. Visualization of ACA.

addition, the well-designed decoding approach, i.e., CAF,
greatly facilitates the depth prediction of the model (Sec. 5.5
in the main text).

Visualization of ACA. Previous approaches using vari-
ance struggle to encode efficient cost information for chal-
lenging areas, such as the occluded areas marked in the
black box in Fig. S2. Our proposed ACA module learns an
adaptive weight for different views to encode accurate ge-
ometric information. As illustrated in Fig. S2, the weights
learned by ACA amplify the contribution of consistent pixel
pairs, such as the visible areas in source image 1 and 3,
while suppressing inconsistent ones, as shown in the oc-
cluded areas in the source image 2.

Different ACA networks. The primary challenge of ap-
plying ACA to the NVS task is the unavailability of the
target view, which we addressed by adopting a coarse-to-
fine framework. In the main text, the weight learning net-
work utilized in ACA is illustrated in Table S1, follow-
ing the MVS method, i.e., AA-RMVSNet [18]. More-
over, other networks can also be embedded into our coarse-
to-fine framework to learn inter-view weights. Here, we
adopt another MVS method, i.e., MVSTER [16], to learn
adaptive weights. The result on the DTU test set is
29.31/0.969/0.064 (PSNR/SSIM/LPIPS), which is compa-
rable with the result obtained using [18]. In summary, our
main contribution is to propose an approach for applying
ACA to the NVS task, without specifying a particular net-
work for learning weights.

Analysis of SVA. Previous approaches directly uses a
pooling network to aggregate multi-view 2D features for
encoding 3D descriptors, which are not spatially context-
aware, leading to discontinuities in the decoded depth map
and rendered view (see Fig. S3 (a)). To address this issue,
convolutional networks can be used to impose spatial con-
straints on adjacent descriptors. However, due to the smooth
nature of convolution, some high-frequency details may be
lost. Since detailed information comes from the multi-view

w/o SVAd w/ SVAd w/o SVAsm w/ SVAsm 
(a) (b)

Figure S3. Visualization of SVA. SVAsm and SVAd represent ϕsm

and ϕd of SVA, respectively.

Method Reference view Novel view

Abs err ↓ Acc(2)↑ Acc(10)↑ Abs err ↓ Acc(2)↑ Acc(10)↑
Baseline-mvs 3.71 0.815 0.942 4.49 0.778 0.928
Baseline-final 3.58 0.842 0.944 4.32 0.800 0.928
Ours-mvs 2.79 0.836 0.965 3.15 0.816 0.958
Ours-final 2.47 0.900 0.971 2.83 0.879 0.961

Table S7. More comprehensive depth metrics.“-mvs” represents
the depth obtained from the cost volume and “-final” represents the
final depth obtained through volume rendering.

Approach PSNR↑ SSIM↑ LPIPS↓
Regression 27.32 0.945 0.119
Blending 28.40 0.962 0.091
Overall 29.36 0.969 0.064

Table S8. Quantitative results for intermediate results. Overall
represents the fused views.

features, we employ a divide-and-conquer approach to ag-
gregate descriptors. Firstly, we employ a 3D U-Net to ag-
gregate spatial context and obtain smooth descriptors. De-
spite resolving the issue of discontinuities, an unsharpened
object edge occurs (Fig. S3 (b)). Secondly, we propose us-
ing smoothed features as queries, with multi-view features
serving as keys and values. Applying the attention mecha-
nism allows us to gather high-frequency details adaptively.
This practice results in continuities and sharp boundaries in
both rendered views and depth maps.

S3. More Qualitative Results
Qualitative Results under the Generalization Setting.
As shown in Fig. S4, S5, and S6, we present the qualita-
tive comparison of rendering quality on the DTU [1], NeRF
Synthetic [13], and Real Forward-facing [12] datasets, re-
spectively. Our method can synthesize views with higher
fidelity, especially in challenging areas. For example, in
occluded regions and geometrically complex scenes, our
method can reconstruct more details while exhibiting fewer
artifacts at objects’ edges and in reflective areas.



Qualitative Results under the Per-scene Optimiza-
tion Setting. Benefiting from the strong initialization of
our generalizable model, excellent performance can be
achieved within just a short fine-tuning period, such as 15
minutes. As shown in Fig. S7, we present the results af-
ter fine-tuning. After per-scene optimization, the model
demonstrates enhanced capabilities in handling scene de-
tails, resulting in views with higher fidelity.

Qualitative Comparison of Depth Maps. As shown in
Figs. S8, S9, and S10, we present the qualitative comparison
of depth maps on the DTU [1], NeRF Synthetic [13], and
Real Forward-facing [12] datasets, respectively. The depth
maps generated by our method can maintain sharper object
edges and preserve more details of scenes, which verifies
the strong geometry reasoning capability of our method.

Fusion Weight Visualization. As shown in Fig. S11, we
present the fusion weights of the Consistency-aware Fusion
(CAF) module. The blending approach generally demon-
strates higher confidence in most areas, while the regression
approach shows higher confidence in challenging regions
such as object boundaries and reflections.

Error Map Visualization. As shown in Fig. S12, we
present the error maps obtained by two decoding ap-
proaches, as well as the error maps of the fused views. The
blending approach tends to exhibit lower errors in most ar-
eas, while the regression approach may have lower errors
in some regions with reflections and edges. In addition, we
also present quantitative results, as shown in Table S8. The
views fused through Consistency-aware Fusion (CAF) inte-
grate the advantages of both intermediate views, achieving
a further improvement in quality.

S4. Per-scene Breakdown
As shown in Tables S9, S10, S11, and S12, we present
the per-scene breakdown results of three datasets (DTU [1],
NeRF Synthetic [13], and Real Forward-facing [12]). These
results align with the averaged results in the main text.

S5. Limitations
Although our approach can achieve high performance for
view synthesis, it still has the following limitations. 1) Like
many other baselines [3, 15], our method is tailored specifi-
cally for static scenes and may not perform optimally when
applied directly to dynamic scenes. 2) During per-scene op-
timization, the training speed and rendering speed of NeRF-
based methods, including our method, are time-consuming.
We will explore the potential of Gaussian Splatting [7] in
generalizable NVS to address this issue in the future.

Scan #1 #8 #21 #103 #114

Metric PSNR ↑
PixelNeRF [19] 21.64 23.70 16.04 16.76 18.40
IBRNet [15] 25.97 27.45 20.94 27.91 27.91
MVSNeRF [3] 26.96 27.43 21.55 29.25 27.99
NeuRay [11] 28.59 27.63 23.05 29.71 29.23
ENeRF [10] 28.85 29.05 22.53 30.51 28.86
GNT [14] 27.25 28.12 21.67 28.45 28.01
Ours 30.72 30.87 23.96 31.78 29.84

NeRF10.2h [13] 26.62 28.33 23.24 30.40 26.47
IBRNetft−1.0h [15] 31.00 32.46 27.88 34.40 31.00
MVSNeRFft−15min [3] 28.05 28.88 24.87 32.23 28.47
NeuRayft−1.0h [11] 27.77 25.93 23.40 28.57 29.14
ENeRFft−1.0h [10] 30.10 30.50 22.46 31.42 29.87
Oursft−15min 31.54 31.41 24.07 32.97 30.52
Oursft−1.0h 31.58 31.61 24.07 33.09 30.53

Metric SSIM ↑
PixelNeRF [19] 0.827 0.829 0.691 0.836 0.763
IBRNet [15] 0.918 0.903 0.873 0.950 0.943
MVSNeRF [3] 0.937 0.922 0.890 0.962 0.949
NeuRay [11] 0.872 0.826 0.830 0.920 0.901
ENeRF [10] 0.958 0.955 0.916 0.968 0.961
GNT [14] 0.922 0.931 0.881 0.942 0.960
Ours 0.971 0.965 0.943 0.974 0.965

NeRF10.2h [13] 0.902 0.876 0.874 0.944 0.913
IBRNetft−1.0h [15] 0.955 0.945 0.947 0.968 0.964
MVSNeRFft−15min [3] 0.934 0.900 0.922 0.964 0.945
NeuRayft−1.0h [11] 0.872 0.751 0.845 0.868 0.900
ENeRFft−1.0h [10] 0.966 0.959 0.924 0.971 0.965
Oursft−15min 0.973 0.967 0.945 0.976 0.969
Oursft−1.0h 0.973 0.967 0.945 0.976 0.969

Metric LPIPS ↓
PixelNeRF [19] 0.373 0.384 0.407 0.376 0.372
IBRNet [15] 0.190 0.252 0.179 0.195 0.136
MVSNeRF [3] 0.155 0.220 0.166 0.165 0.135
NeuRay [11] 0.157 0.201 0.156 0.140 0.128
ENeRF [10] 0.086 0.119 0.107 0.107 0.076
GNT [14] 0.143 0.210 0.171 0.149 0.139
Ours 0.061 0.088 0.068 0.085 0.065

NeRF10.2h [13] 0.265 0.321 0.246 0.256 0.225
IBRNetft−1.0h [15] 0.129 0.170 0.104 0.156 0.099
MVSNeRFft−15min [3] 0.171 0.261 0.142 0.170 0.153
NeuRayft−1.0h [11] 0.155 0.272 0.142 0.177 0.125
ENeRFft−1.0h [10] 0.071 0.106 0.097 0.102 0.074
Oursft−15min 0.057 0.082 0.067 0.080 0.061
Oursft−1.0h 0.056 0.082 0.066 0.079 0.059

Table S9. Quantitative results of five sample scenes on the DTU
test set.



MVSNeRF MacthNeRF ENeRF Ours Ground Truth

Figure S4. Qualitative comparison of rendering quality with state-of-the-art methods [3, 4, 10] on the DTU dataset under general-
ization and three views settings.

Scene #30 #31 #34 #38 #40 #41 #45 #55 #63 #82 #110

Metric PSNR ↑
NeuRay [11] 21.10 23.35 24.46 26.01 24.16 27.17 23.75 27.66 23.36 23.84 29.90
ENeRF [10] 29.20 25.13 26.77 28.61 25.67 29.51 24.83 30.26 27.22 26.83 27.97
GNT [14] 27.13 23.54 25.10 27.67 24.48 28.10 24.54 28.86 26.36 26.09 26.93
Ours 30.94 26.95 28.21 29.87 28.62 31.24 26.01 32.46 29.24 29.78 29.30

Metric SSIM ↑
NeuRay [11] 0.916 0.851 0.767 0.800 0.812 0.872 0.878 0.870 0.927 0.919 0.927
ENeRF [10] 0.981 0.937 0.934 0.946 0.947 0.960 0.948 0.973 0.978 0.971 0.974
GNT [14] 0.954 0.907 0.880 0.921 0.893 0.908 0.918 0.934 0.938 0.949 0.930
Ours 0.986 0.956 0.954 0.961 0.966 0.972 0.963 0.983 0.984 0.980 0.980

Metric LPIPS ↓
NeuRay [11] 0.141 0.161 0.234 0.225 0.209 0.172 0.121 0.163 0.104 0.119 0.116
ENeRF [10] 0.052 0.108 0.117 0.118 0.120 0.091 0.077 0.069 0.048 0.066 0.069
GNT [14] 0.110 0.172 0.201 0.231 0.116 0.168 0.134 0.155 0.127 0.138 0.127
Ours 0.039 0.075 0.085 0.082 0.082 0.065 0.051 0.045 0.032 0.044 0.052

Table S10. Quantitative results of other eleven scenes on the DTU test set.



MVSNeRF MatchNeRF ENeRF Ours Ground Truth

Figure S5. Qualitative comparison of rendering quality with state-of-the-art methods [3, 4, 10] on the NeRF Synthetic dataset under
generalization and three views settings.

MVSNeRF MatchNeRF ENeRF Ours Ground Truth

Figure S6. Qualitative comparison of rendering quality with state-of-the-art methods [3, 4, 10] on the Real Forward-facing dataset
under generalization and three views settings.



DT
U

Re
al

 F
or

w
ar

d-
fa

ci
ng

N
eR

F 
Sy

nt
he

tic

Generalization Fine-tuning Generalization Fine-tuning Generalization Fine-tuning

Figure S7. Qualitative comparison of results before and after fine-tuning on the DTU [1], Real Forward-facing [12], and NeRF
Synthetic [13] datasets.

Image MVSNeRF MatchNeRF ENeRF Ours

Figure S8. Qualitative comparison of depth maps with state-of-the-art methods [3, 4, 10] on the DTU dataset.



Image MVSNeRF MatchNeRF ENeRF Ours

Figure S9. Qualitative comparison of depth maps with state-of-the-art methods [3, 4, 10] on the NeRF Synthetic dataset.

Image MVSNeRF MatchNeRF ENeRF Ours

Figure S10. Qualitative comparison of depth maps with state-of-the-art methods [3, 4, 10] on the Real Forward-facing dataset.



Re
al

 F
or

w
ar

d-
fa

ci
ng

N
eR

F 
Sy

nt
he

tic

Image �� �� Image �� ��

DT
U

DT
U

Figure S11. Visualization of Fusion Weights. Wb and Wr represent the weight maps of the blending approach and regression approach,
respectively.

Image ���� ���� ����

Figure S12. Visualization of error maps. Errb and Errr represent the error maps of the views obtained through the blending approach
and the regression approach, respectively. Errt is the error map of the final fused target view. The yellow boxes indicate that the blending
approach outperforms the regression approach, while the orange boxes indicate regions where the regression approach outperforms the
blending approach.



Scene Chair Drums Ficus Hotdog Lego Materials Mic Ship

Metric PSNR ↑
PixelNeRF [19] 7.18 8.15 6.61 6.80 7.74 7.61 7.71 7.30
IBRNet [15] 24.20 18.63 21.59 27.70 22.01 20.91 22.10 22.36
MVSNeRF [3] 23.35 20.71 21.98 28.44 23.18 20.05 22.62 23.35
NeuRay [11] 27.27 21.09 24.09 30.50 24.38 21.90 26.08 21.30
ENeRF [10] 28.29 21.71 23.83 34.20 24.97 24.01 26.62 25.73
GNT [14] 27.98 20.27 26.86 29.34 23.17 30.75 23.19 24.86
Ours 28.87 22.33 24.55 34.96 24.90 26.08 27.98 26.22

NeRF [13] 31.07 25.46 29.73 34.63 32.66 30.22 31.81 29.49
IBRNetft−1.0h [15] 28.18 21.93 25.01 31.48 25.34 24.27 27.29 21.48
MVSNeRFft−15min [3] 26.80 22.48 26.24 32.65 26.62 25.28 29.78 26.73
NeuRayft−1.0h [11] 27.37 21.69 23.45 32.26 26.87 23.03 28.12 24.49
ENeRFft−1.0h [10] 28.94 25.33 24.71 35.63 25.39 24.98 29.25 26.36
Oursft−15min 30.93 23.29 25.46 36.28 26.96 26.91 31.20 27.51
Oursft−1.0h 31.07 23.38 25.62 36.73 27.24 27.05 31.49 27.87

Metric SSIM ↑
PixelNeRF [19] 0.624 0.670 0.669 0.669 0.671 0.644 0.729 0.584
IBRNet [15] 0.888 0.836 0.881 0.923 0.874 0.872 0.927 0.794
MVSNeRF [3] 0.876 0.886 0.898 0.962 0.902 0.893 0.923 0.886
NeuRay [11] 0.912 0.856 0.901 0.953 0.899 0.881 0.952 0.779
ENeRF [10] 0.965 0.918 0.932 0.981 0.948 0.937 0.969 0.891
GNT [14] 0.935 0.891 0.941 0.940 0.897 0.974 0.791 0.874
Ours 0.971 0.931 0.939 0.983 0.956 0.953 0.980 0.899

NeRF [13] 0.971 0.943 0.969 0.980 0.975 0.968 0.981 0.908
IBRNetft−1.0h [15] 0.955 0.913 0.940 0.978 0.940 0.937 0.974 0.877
MVSNeRFft−15min [3] 0.934 0.898 0.944 0.971 0.924 0.927 0.970 0.879
NeuRayft−1.0h [11] 0.920 0.869 0.895 0.949 0.912 0.880 0.954 0.788
ENeRFft−1.0h [10] 0.971 0.960 0.939 0.985 0.949 0.947 0.985 0.893
Oursft−15min 0.978 0.936 0.946 0.987 0.959 0.958 0.987 0.909
Oursft−1.0h 0.979 0.938 0.947 0.988 0.963 0.960 0.989 0.912

Metric LPIPS ↓
PixelNeRF [19] 0.386 0.421 0.335 0.433 0.427 0.432 0.329 0.526
IBRNet [15] 0.144 0.241 0.159 0.175 0.202 0.164 0.103 0.369
MVSNeRF [3] 0.282 0.187 0.211 0.173 0.204 0.216 0.177 0.244
NeuRay [11] 0.146 0.211 0.184 0.113 0.126 0.165 0.104 0.256
ENeRF [10] 0.055 0.110 0.076 0.059 0.075 0.084 0.039 0.183
GNT [14] 0.065 0.116 0.063 0.095 0.112 0.025 0.243 0.115
Ours 0.035 0.089 0.064 0.060 0.064 0.054 0.021 0.175

NeRF [13] 0.055 0.101 0.047 0.089 0.054 0.105 0.033 0.263
IBRNetft−1.0h [15] 0.079 0.133 0.082 0.093 0.105 0.093 0.040 0.257
MVSNeRFft−15min [3] 0.129 0.197 0.171 0.094 0.176 0.167 0.117 0.294
NeuRayft−1.0h [11] 0.074 0.136 0.105 0.072 0.091 0.137 0.072 0.230
ENeRFft−1.0h [10] 0.030 0.045 0.071 0.028 0.070 0.059 0.017 0.183
Oursft−15min 0.024 0.080 0.059 0.028 0.052 0.044 0.015 0.181
Oursft−1.0h 0.023 0.076 0.058 0.026 0.050 0.043 0.012 0.179

Table S11. Quantitative results on the NeRF Synthetic dataset.



Scene Fern Flower Fortress Horns Leaves Orchids Room Trex

Metric PSNR ↑
PixelNeRF [19] 12.40 10.00 14.07 11.07 9.85 9.62 11.75 10.55
IBRNet [15] 20.83 22.38 27.67 22.06 18.75 15.29 27.26 20.06
MVSNeRF [3] 21.15 24.74 26.03 23.57 17.51 17.85 26.95 23.20
NeuRay [11] 21.17 26.29 27.98 23.91 19.51 18.81 28.92 20.55
ENeRF [10] 21.92 24.28 30.43 24.49 19.01 17.94 29.75 21.21
GNT [14] 22.21 23.56 29.16 22.80 19.18 17.43 29.35 20.15
Ours 22.53 25.73 30.54 25.41 19.46 18.76 29.79 22.05

NeRFft−10.2h [13] 23.87 26.84 31.37 25.96 21.21 19.81 33.54 25.19
IBRNetft−1.0h [15] 22.64 26.55 30.34 25.01 22.07 19.01 31.05 22.34
MVSNeRFft−15min [3] 23.10 27.23 30.43 26.35 21.54 20.51 30.12 24.32
NeuRayft−1.0h [11] 22.57 25.98 29.17 25.40 20.74 20.36 27.06 23.43
ENeRFft−1.0h [10] 22.08 27.74 29.58 25.50 21.26 19.50 30.07 23.39
Oursft−15min 23.67 27.89 31.63 27.47 22.41 20.63 33.69 25.53
Oursft−1.0h 23.82 28.09 31.63 27.66 22.59 20.80 33.97 25.54

Metric SSIM ↑
PixelNeRF [19] 0.531 0.433 0.674 0.516 0.268 0.317 0.691 0.458
IBRNet [15] 0.710 0.854 0.894 0.840 0.705 0.571 0.950 0.768
MVSNeRF [3] 0.638 0.888 0.872 0.868 0.667 0.657 0.951 0.868
NeuRay [11] 0.632 0.823 0.829 0.779 0.668 0.590 0.916 0.718
ENeRF [10] 0.774 0.893 0.948 0.905 0.744 0.681 0.971 0.826
GNT [14] 0.736 0.791 0.867 0.820 0.650 0.538 0.945 0.744
Ours 0.798 0.912 0.947 0.924 0.773 0.725 0.975 0.848

NeRFft−10.2h [13] 0.828 0.897 0.945 0.900 0.792 0.721 0.978 0.899
IBRNetft−1.0h [15] 0.774 0.909 0.937 0.904 0.843 0.705 0.972 0.842
MVSNeRFft−15min [3] 0.795 0.912 0.943 0.917 0.826 0.732 0.966 0.895
NeuRayft−1.0h [11] 0.687 0.807 0.854 0.822 0.714 0.657 0.909 0.799
ENeRFft−1.0h [10] 0.770 0.923 0.940 0.904 0.827 0.725 0.965 0.869
Oursft−15min 0.825 0.930 0.963 0.948 0.869 0.785 0.986 0.915
Oursft−1.0h 0.829 0.932 0.963 0.949 0.873 0.791 0.987 0.915

Metric LPIPS ↓
PixelNeRF [19] 0.650 0.708 0.608 0.705 0.695 0.721 0.611 0.667
IBRNet [15] 0.349 0.224 0.196 0.285 0.292 0.413 0.161 0.314
MVSNeRF [3] 0.238 0.196 0.208 0.237 0.313 0.274 0.172 0.184
NeuRay [11] 0.257 0.162 0.163 0.225 0.253 0.283 0.136 0.254
ENeRF [10] 0.224 0.164 0.092 0.161 0.216 0.289 0.120 0.192
GNT [14] 0.223 0.203 0.157 0.208 0.255 0.341 0.103 0.275
Ours 0.185 0.126 0.101 0.130 0.188 0.243 0.150 0.176

NeRFft−10.2h [13] 0.291 0.176 0.147 0.247 0.301 0.321 0.157 0.245
IBRNetft−1.0h [15] 0.266 0.146 0.133 0.190 0.180 0.286 0.089 0.222
MVSNeRFft−15min [3] 0.253 0.143 0.134 0.188 0.222 0.258 0.149 0.187
NeuRayft−1.0h [11] 0.229 0.173 0.162 0.209 0.243 0.257 0.160 0.208
ENeRFft−1.0h [10] 0.197 0.121 0.101 0.155 0.168 0.247 0.113 0.169
Oursft−15min 0.156 0.090 0.069 0.093 0.123 0.192 0.052 0.106
Oursft−1.0h 0.151 0.087 0.068 0.089 0.116 0.182 0.051 0.103

Table S12. Quantitative results on the Real Forward-facing dataset.



References
[1] Henrik Aanaes, Rasmus Ramsbol Jensen, George Vogiatzis,

Engin Tola, and Anders Bjorholm Dahl. Large-scale data for
multiple-view stereopsis. Int. J. Comput. Vis., 120:153–168,
2016. 1, 2, 4, 5, 8

[2] Di Chang, Aljaž Božič, Tong Zhang, Qingsong Yan, Ying-
cong Chen, Sabine Süsstrunk, and Matthias Nießner. Rc-
mvsnet: Unsupervised multi-view stereo with neural render-
ing. In Proc. Eur. Conf. Comput. Vis., 2022. 3

[3] Anpei Chen, Zexiang Xu, Fuqiang Zhao, Xiaoshuai Zhang,
Fanbo Xiang, Jingyi Yu, and Hao Su. Mvsnerf: Fast general-
izable radiance field reconstruction from multi-view stereo.
In Proc. IEEE Int. Conf. Comput. Vis., pages 14124–14133,
2021. 1, 3, 5, 6, 7, 8, 9, 11, 12

[4] Yuedong Chen, Haofei Xu, Qianyi Wu, Chuanxia Zheng,
Tat-Jen Cham, and Jianfei Cai. Explicit correspondence
matching for generalizable neural radiance fields. arXiv
preprint arXiv:2304.12294, 2023. 6, 7, 8, 9

[5] Ross Girshick. Fast r-cnn. In Proc. IEEE Int. Conf. Comput.
Vis., 2015. 3

[6] Xiaodong Gu, Zhiwen Fan, Siyu Zhu, Zuozhuo Dai, Feitong
Tan, and Ping Tan. Cascade cost volume for high-resolution
multi-view stereo and stereo matching. In Proc. IEEE Conf.
Comput. Vis. Pattern Recogn., pages 2495–2504, 2020. 3

[7] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler,
and George Drettakis. 3d gaussian splatting for real-time
radiance field rendering. ACM Transactions on Graphics, 42
(4), 2023. 5

[8] Tejas Khot, Shubham Agrawal, Shubham Tulsiani,
Christoph Mertz, Simon Lucey, and Martial Hebert.
Learning unsupervised multi-view stereopsis via robust
photometric consistency. arXiv preprint arXiv:1905.02706,
2019. 3

[9] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 1

[10] Haotong Lin, Sida Peng, Zhen Xu, Yunzhi Yan, Qing Shuai,
Hujun Bao, and Xiaowei Zhou. Efficient neural radiance
fields for interactive free-viewpoint video. In SIGGRAPH
Asia Conference Proceedings, 2022. 1, 2, 3, 5, 6, 7, 8, 9, 11,
12

[11] Yuan Liu, Sida Peng, Lingjie Liu, Qianqian Wang, Peng
Wang, Christian Theobalt, Xiaowei Zhou, and Wenping
Wang. Neural rays for occlusion-aware image-based ren-
dering. In Proc. IEEE Conf. Comput. Vis. Pattern Recogn.,
2022. 3, 5, 6, 11, 12

[12] Ben Mildenhall, Pratul P Srinivasan, Rodrigo Ortiz-Cayon,
Nima Khademi Kalantari, Ravi Ramamoorthi, Ren Ng, and
Abhishek Kar. Local light field fusion: Practical view syn-
thesis with prescriptive sampling guidelines. ACM Trans.
Graph., 38(4):1–14, 2019. 1, 2, 3, 4, 5, 8

[13] Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik,
Jonathan T. Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. In Proc. Eur. Conf. Comput. Vis., 2020. 1, 2, 3, 4, 5,
8, 11, 12

[14] Mukund Varma T, Peihao Wang, Xuxi Chen, Tianlong Chen,
Subhashini Venugopalan, and Zhangyang Wang. Is attention
all that neRF needs? In Proc. Int. Conf. Learn. Repr., 2023.
5, 6, 11, 12

[15] Qianqian Wang, Zhicheng Wang, Kyle Genova, Pratul Srini-
vasan, Howard Zhou, Jonathan T. Barron, Ricardo Martin-
Brualla, Noah Snavely, and Thomas Funkhouser. Ibrnet:
Learning multi-view image-based rendering. In Proc. IEEE
Conf. Comput. Vis. Pattern Recogn., 2021. 1, 5, 11, 12

[16] Xiaofeng Wang, Zheng Zhu, Guan Huang, Fangbo Qin, Yun
Ye, Yijia He, Xu Chi, and Xingang Wang. Mvster epipo-
lar transformer for efficient multi-view stereo. In Proc. Eur.
Conf. Comput. Vis., pages 573–591. Springer, 2022. 4

[17] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Si-
moncelli. Image quality assessment: from error visibility to
structural similarity. IEEE transactions on image processing,
13(4):600–612, 2004. 1

[18] Zizhuang Wei, Qingtian Zhu, Chen Min, Yisong Chen, and
Guoping Wang. Aa-rmvsnet adaptive aggregation recurrent
multi-view stereo network. In Proc. IEEE Int. Conf. Comput.
Vis., pages 6187–6196, 2021. 4

[19] Alex Yu, Vickie Ye, Matthew Tancik, and Angjoo Kanazawa.
pixelNeRF: Neural radiance fields from one or few images.
In Proc. IEEE Conf. Comput. Vis. Pattern Recogn., 2021. 5,
11, 12

[20] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In Proc. IEEE Conf. Comput.
Vis. Pattern Recogn., pages 586–595, 2018. 1


