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In this supplementary, we provide additional technical
details and experimental results that are not included in the
main paper due to space limit.

S1. Supportive Explanations

Network architecture. Our network builds upon the
encoder-decoder structure presented in [4] and adapts the
method from [2] to treat height and temporal dimensions
as channel dimensions, facilitating the use of 2D convolu-
tional layers for enhanced processing efficiency. For the
occupancy grid prediction, we take a 5-frame point cloud
as input, each voxelized with a grid size [100, 100, 100],
and use an encoder with a sequence of convolutional lay-
ers to encode the input data into a lower-dimensional fea-
ture space. This is followed by a decoding process, which
reconstructs the occupancy grid from the encoded features.
The output is a sigmoid-activated occupancy grid, predict-
ing the presence or absence of object points for each voxel
in all five frames. For the motion detection and flow esti-
mation, we pass the output of the occupancy grid predic-
tion through another encoder-decoder structure to classify
objects as static or moving and regress a motion vector for
each occupied voxel. The encoder extracts features from
the occupancy grid, and the subsequent decoder outputs the
motion segmentation and flow estimation. The final output
consists of the predicted flow for each voxel and the motion
segmentation.

Implementation details. We empirically determined the
weights for the training losses Loce, Lmot; Lepes Lret and Lang
as 1:1:1:1:1. For the occupancy prediction loss, since the
number of empty voxels is far larger than that of occupied
voxels, we apply class-balanced sampling in dataloader for
improved training robustness. Similarly, it is also applied to
ensure a class balance between static and moving objects.

S2. Additional Experimental Results

Performance Analysis of PCAcc. To further understand
the performance of generic motion estimation approaches
in terms of motion magnitude, we study the behavior of the
state-of-the-art method in [1], which estimates object scene
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Figure S1. Performance Analysis of PCAcc [1] under varying
object motion speed.

flows by analyzing temporally point clouds accumulation
(PCAcc). To analyze the impact of motion magnitude, we
categorize objects based on their speed ranges, from low
to high, and calculate the average angle error of the flow
for each group. As shown in Fig. S1, the errors increase
dramatically as the speed decreases. This trend underscores
that the generic motion estimator falters in the regime of
subtle motion, emphasizing the need for methods dedicated
to finer motion analysis.

End-to-end training. In the main paper, we have trained
the entire network in an end-to-end manner, including both
the occupancy completion network and the subsequent mo-
tion perception networks. Here, we study the two-stage
training strategy — training the occupancy completion net-
work first, and then training the motion perception networks
with the occupancy network frozen. As shown in Tab. S1,
we observe better performance from the end-to-end train-
ing strategy. This is likely because end-to-end training in-
tegrates awareness of the final motion perception task into
the occupancy completion network training, providing task-
oriented guidance. Such guidance is valuable, especially as
the direct supervision of the occupancy completion itself is
sparse.

Qualitative comparison on motion flow. We provide more
qualitative results on the motion flow estimation in compar-
ison to the baselines in Fig. S3. As shown, the motion flows
predicted from our S’More lead to better point cloud align-
ment, indicating its high accuracy.

Additional discussions and results on FastNSF [3]. In
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Figure S2. Ablation study on grid size and point-/object-level prediction.
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Figure S3. Qualitative comparison. We exhibit point cloud registration results for two point cloud sets: the first frame (in red) and the
last frame (in green). The results are shown using (b) ground truth motion, and estimated motions by (c) S’More(ours), (d) FastNSF, and
(e) ICP. The blue points indicate resultant positions after adding flow to the red points, which should ideally align with the green points.

Table S1. Ablation study on the two-stage and end-to-end the main paper, we report the results from FastNSF with
. , . . .
training strategy of S’More. its standard scene-centric setting — we remove background
points and feed the remaining points from all objects al-
EPE (D) Angle Error (1) F1 Score (1) together to FastNSF for flow estimation. Here, we report
Two-stage 0.0518 0.4503 0.8192 ] ; fant. . o
Endto-ond 0.0437 0.3189 0.8323 additional results with an object-centric setting — we feed

points from each object separately to FastNSF. As shown in
Tab. S2, this still underperforms S’More. Empirically, we




Table S2. Additional comparison with FastNSF.

EPE (}) Angle Error () F1 Score (1)
FastNSF [3] (object-centric) 1.0574 0.5309 0.7123
S’More 0.0437 0.3189 0.8323

Table S3. Study on the impact of training data purity.

Smin EPE (]) Angle Error () F1 Score (1)
10.0 0.0979 0.5550 0.1414
5.0 0.0898 0.5796 0.0321
1.0 0.0663 0.4661 0.5910
0.5 0.0720 0.5465 0.4930
0.2 (S’More) 0.0437 0.3189 0.8323

observe that while the motion flows predicted by FastNSF
are sufficiently accurate for large motions, their accuracy re-
mains relatively low when it comes to small motions. This
may indicate the necessity of dedicated supervised learn-
ing, as we do, for precise small motion estimation in the
presence of swimming effect.

Purity of training data. In the main paper, we report the
accuracy when including large-motion samples in the train-
ing data, where we set the threshold f.;, = 10. Here, we
report the accuracy for a range of thresholds, i.e. fmin €
{0.5,1.0,5.0,10.0}. with results reported in Tab. S3. We
observe dropped performance with increased values of fiin.
This implies the important benefit brought about by the high
purity of the training data in terms of motion magnitude.
Empirically, it indicates that the dedicated training on the
regime of small motion facilitates the learning to distinguish
subtle motions from static objects, despite the swimming ar-
tifact.

Grid size. In the main paper, we compare the flow estima-
tion error under two options in grid size, [100, 100, 100]
and [500, 500, 4], respectively. Here, we also report the
static/moving classification performance with F1 score in
Fig. S2 (a). Again, we observe that higher resolution along
the vertical z-axis benefits the performance.

Object-level flow with rigidity constraint. Instead of re-
gressing a motion flow vector separately for each occupied
voxel, we also attempt to regress a single rigid transforma-
tion (consisting of rotation and translation) for the entire
object thereby deriving the motion flows. We have reported
the comparison in flow estimation error in the main paper.
Here, we further report the F1 score in Fig. S2 (b). We again
observe empirically superior performance from the point-
level regression.

Data curation. Our training data and evaluation benchmark
are derived from the Waymo Open Dataset. We extract data
samples from every 5 consecutive frames, i.e. a 0.5s tem-
poral window; we only extract samples with small motion
and then further classify objects as static or moving depend-
ing on the motion flow, as depicted in the main paper. We

keep the data sample only if the objects are visible across all
five frames, i.e. we ignore corner cases where objects com-
pletely leave the field of view or become occluded. We use
the same split of training and test set as in [1].

S3. Demonstration Videos

In the supplementary folder, we provide video results by
running S’More on entire sequences and comparing them
with the ground truth, to demonstrate its effectiveness. We
suggest readers watch them as videos are the best way to
perceive and understand motions.
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