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1. Overview
The supplementary material includes a video and this pdf
document. Please refer to the homepage to access the video
for more dataset visualization and DisCo’s in-the-wild re-
construction results.

1.1. Scan Registration and Alignment

We conduct a two-stage alignment method to match the
laser scan and RGB-D sequence coordinates for annota-
tions. First, we use Pointsect[3] to render pseudo images
from the comprehensive point cloud and align them with the
RGB-D footage using COLMAP[8]. This gives an initial
global transformation matrix. Next, we refine the transfor-
mation matrix further with Generalized ICP (GICP)[9]. Do-
ing a coarse global register through structure-from-motion
first, then dialing it in with GICP, delivers an accurate and
sturdy alignment between data types.

1.2. dataset class statistics

Fig. 1 presents the distribution of annotated objects across
different classes. LASA is far superior to Scan2CAD in
terms of scale. LASA contains 3 times more unique CAD
models - 10k vs 3k in Scan2CAD. This allows representing
a greater variety of object shapes and forms. While LASA
has 17 object classes, focusing on furniture items, versus 35
classes in Scan2CAD, it makes up for this with order-of-
magnitude more annotations per class.

1.3. Detail implementation of DisCo

In DisCo, we implement our triplane VAE model on the
resolution of 128×128. During the training of VAE, the
latent triplane is randomly downsampled to 64×64 for
learning a robust decoder with low-resolution input. When
training the VAE, several augmentations are used to train
a robust model, which is randomly shifting -0.1m to 0.1m
from the centers (already normalized from -1m to 1m),
rotating between -15 to 15 degrees, and scaling from 0.7 to

Figure 1. Dataset statistic of LASA and Scan2CAD dataset.

Figure 2. Comparison of the object detection results between with-
out OccGOD and with OccGOD.

1.0. the kl weight for the Lkl is set to 0.025. The triplane
diffusion is conducted on 64×64 triplane.
During the training, for each object, 1-5 images are
randomly sampled. For evaluation, we typically chose up
to 10 images as inputs. There are six super categories that
are trained, which are Chair, Table, Bed, Cabinet, Shelf,
Sofa. Among them, Chair contains sub-categories of stool
and chair, Cabinet contains cabinet, oven, refrigerator, and
dishwasher.
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Train On chair of (a)LASA (b)Syn (c)LASA’s syn Syn LASA’s syn

Test On chair of LASA Syn LASA’s syn

IFNet 26.4 / 24.6 / 22.5 21.6 / 18.0 / 20.1 21.0 / 15.9 / 21.0 57.2 / 4.35 / 49.8 41.0 / 7.26 / 43.9
3DShape2VecSet 27.1 / 7.32 / 21.7 23.8 / 10.7 / 18.1 25.5 / 8.23 / 20.9 51.7 / 3.21 / 31.8 33.8 / 5.60 / 29.2

LAS-pts - / 11.0 / 21.7 - / 19.5 / 17.3 - / 17.1 / 20.2 - / 5.8 / 45.3 - / 7.50 / 25.7
Ours-pts 30.1 / 6.69 / 23.9 26.3 / 10.5 / 20.1 28.5 / 8.39 /23.5 63.0 / 2.35 / 47.4 47.7 / 2.93 / 44.6

Ours-pts+img 35.6 / 4.35 / 27.4 26.9 / 10.0 / 22.6 32.0 / 7.01 / 24.9 69.3 / 1.13 / 55.2 50.2 / 2.56 / 47.5

Table 1. Domain gap analysis on chair category. The evaluation metrics are mIoU / chamfer L2 / F-score respectively.

LASA dataset follows train/test/val splits with
70%/20%/10% random partition for training and eval-
uation. Notice that the splits are conducted at the scene
level.

1.4. Detail implementation of OccGOD

In OccGOD, the occupancy prediction head consists of two
components: a feature pyramid neck and a regression head.
The feature pyramid neck takes in multi-level features from
the backbone of the model. To enhance the resolution and
density of the output feature grid, we employ 3D generative
convolution blocks for upsampling. After the feature pyra-
mid neck, a single-layer 3D convolution is applied for voxel
occupancy prediction. To demonstrate the effectiveness of
OccGOD, we provide visualization results in Fig. 2.

1.5. Domain gap analysis

We claim training solely on synthetic data will cause do-
main gap problems when inference on real data. We con-
duct further experiments on the chair category to verify the
existence and the sources of domain gaps in the table 1

Broadly, there are two types of domain gaps: Input gap
is between real and synthesized scans: synthesized scan is
produced by fusing depth renderings of CAD annotations,
whereas real scans are captured using RGBD sensors; The
output gap is between annotation’s distribution of differ-
ent dataset: synthetic dataset such as ShapeNet is collected
from the web while LASA is from real scenarios. To verify
these domain gaps, we compare training on three datasets:
(a) LASA, (b) Syn, and (c) LASA’s syn. LASA’s syn is
modified from LASA with synthesized input point clouds.
It introduces an input domain gap compared with train-
ing on LASA. Syn refers to synthetic dataset comprising
ShapeNet, ABO and 3D-Future, which includes both types
of gaps. To eliminate the effect of dataset size, we use the
same number of training samples across all types of train-
ing datasets. The performance gap between (a) and (c) in-
dicates the existence of the input gap. The performance gap
between (b) and (c) indicates the existence of the output
gap. We observe that both gaps exist, and LASA bridges
the domain gap ensuring real-world generalization.

1.6. Compared with training on all categories

We further compare the performance of training on each
category individually and train on all categories. The com-
parison is shown in Table 2. Both have similar perfor-
mance, except on Shelf. Training on all categories has sig-
nificant improvement for the shelf category. I speculate the
reason for it would be the small number of training samples
while solely training the shelf category.

Strategy Chair Sofa Table

Train individually 38.6 / 3.57/ 31.0 70.7/ 2.88/ 31.6 41.5 / 6.52 / 36.1
Train on all 37.2 / 3.56 / 31.4 71.1 / 2.56 / 32.6 39.1 / 6.73 / 35.4

Cabinet Bed Shelf

Train individually 75.1 / 3.10 / 37.0 62.5 / 2.62 / 35.4 24.5 / 3.45 / 37.5
Train on all 74.4 / 3.07 / 34.5 62.3 / 2.72 / 34.1 27.1 / 2.68 / 38.0

Table 2. Comparison between training on each category individu-
ally and training on all categories together. The evaluation metrics
are mIoU / chamfer L2 / F-score respectively.

1.7. Compared with image-to-3D method.

We claim that supported by both LASA and DisCo, our
method produces better results than current image-to-3D
methods such as OpenLRM[5, 6] and one-2-3-45[7] as
shown in Figure 3. The reasons are two-fold, first, these
methods or their backbones are trained on synthetic data,
introducing domain gap problems when applying to real-
world images. This necessitates LASA, which may poten-
tially alleviate the domain gap problem for these image-to-
3D methods. Second, due to lacking input spatial infor-
mation, current single image-to-3D methods are not able to
output mesh that is spatially aligned with the input scene.

Figure 3. Compare our method with image-to-3D methods.



1.8. Dataset Comparison under the same scene

We further compare Scan2CAD[1] with LASA under the
same scene. Since Scan2CAD is annotated on ScanNet[4]
while LASA is on ArkitScene[2], they cannot compare di-
rectly. We annotate one sample on ArkitScene using meth-
ods in Scan2CAD, as shown in the below figure. LASA
dataset has better quality than Scan2CAD.

Figure 4. Comparison between LASA and Scan2CAD under the
same scene.

1.9. More dataset visualization

We provide examples of both object-level and full scene-
level visualizations in Fig. 5 and Fig. 6. The left-most
image shows the point cloud from laser scans. The middle
image displays a mesh model fused from the data captured
by an iPhone ToF camera. The right-most image is the ren-
der of the annotated CAD models. For video visualization,
please refer to the supplementary video.

1.10. More in-the-wild results

In-the-wild results are included in the video (from 1:04 to
7:25). We first capture RGB-D video using the iPhone’s
ToF sensor or use the existing RGB-D sequence from Ark-
itScene. Then, the RGB-D frames are fused into scene
scans. OccGoD is then employed for detection using the
scene scans as inputs. Then, for each detected object, we
compute its visibility in every frame. More specifically, we
crop the points inside the detected 3d bounding box, then
project to each frame, and compare with the depth map fol-
lowed by counting the number of points that are in front of
the depth map, as the number of visible points. Afterwards,
up to 10 frames are chosen from those with more than 1,024
visible points. These frames and the cropped point cloud
will be the inputs of DisCo to produce the reconstruction
results. Finally, the reconstructed mesh will be put back to
the scene according to the detection result.
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Figure 5. Examples of visualizations for different object types.



Figure 6. Examples of visualizations for full scenes.
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