
MGMap: Mask-Guided Learning for Online Vectorized HD Map Construction

Supplementary Material

In this supplementary file, we provide more details, discus-
sions, and experiments as follows:
• More details of our method;
• Additional experiments;
• Extensive qualitative results;
• Limitations and future work.

A. More Details of Our Method
A.1. Enhanced Multi-level Neck

In this section, we present more details of the fused at-
tention in the enhanced multi-level (EML) neck. EML
neck consists of three cascaded layers, each layer is a ba-
sic ResNet block [2] with fused channel attention (CA) and
spatial attention (SA) [6], which focus on semantics and po-
sitional information to adaptively learn the crucial regions
of the BEV space.

For the BEV feature with the shape of D × HBEV ×
WBEV , channel attention calculates channel weight of size
D×1×1 through average pooling and max pooling, empha-
sizing diverse channel information. A sigmoid function af-
ter MLP is employed to calculate the channel-wise attention
map. For spatial attention, average pooling and max pool-
ing are used to compress the channel dimension D, in which
we construct spatial weight with shape 1×HBEV ×WBEV

to obtain the weight of location information. Then, a spa-
tial map can be generated by a 7 × 7 convolutional layer
followed by the sigmoid function.

A.2. Auxiliary Loss Setting
In addition to regressing the point’s position, an auxiliary
loss for mask construction is required. As mentioned in the
main paper, we combine cross-entropy loss Lce and dice
loss Ldice [4] to construct instance mask M̂ins and binary
mask M̂b. Specifically,

Lins = λinsLce(M̂ins,Mins) + λd1Ldice(M̂ins,Mins), (1)

Lb = λbLce(M̂b,Mb) + λd2Ldice(M̂b,Mb), (2)

where {λins, λd1, λb, λd2} are the corresponding loss
weights for two level masks. Lce calculates the loss of each
pixel equally, while Ldice takes consideration of mining the
foreground areas, which can be formulated as below

Ldice = 1− 2 · M̂ ∩ M
M̂ ∪ M

. (3)

To this end, we expect a larger intersection over the union
area for the predicted mask M̂ and ground truth M.

B. Additional Experiments
B.1. Time Analysis

Table A1 shows the detailed time analysis of each compo-
nent. Compared with MapTR [3], EML neck and PG-MPR
bring a slight time delay while the initial BEV extraction
causes the main time-consuming.

Method
BEV Extractor

decoder PG-MPR Total
init.BEV neck

MapTR 48.4ms / 16.3ms / 64.7ms
Ours 48.4ms 6.9ms 16.3ms 12.7ms 84.3ms

Table A1. Detailed runtime analysis and comparison with MapTR

B.2. Experiments under Different Conditions

We compare MGMap with the state-of-the-art method
MapTR [3] under different weather and lighting conditions,
in which the nuScenes dataset [1] is split by [5]. We employ
ResNet-50 [2] as the image backbone and SECOND [7] for
the LiDAR modality. All models are trained for 24 epochs.
Moreover, experiments are conducted under mAPchamfer

with a threshold setup of [0.5m, 1.0m, 1.5m]. As illustrated
in Table A2, our method achieves the stable improvements
with more than +9 mAP under different conditions.

Modality Method sunny cloudy rainy day night mAP

Camera
MapTR 53.5 49.7 43.3 50.5 35.7 50.0

MGMap 65.2 62.8 49.4 61.7 37.6 60.8

LiDAR
MapTR 59.2 56.9 46.7 56.3 38.9 55.8

MGMap 71.6 70.6 54.0 68.0 48.8 67.5

Fusion
MapTR 66.6 62.7 54.5 63.4 44.8 62.8

MGMap 74.7 75.9 59.5 72.2 53.3 71.7

Table A2. Comparisons under several weather and lighting condi-
tions with different input modalities, our MGMap approach con-
sistently achieves significant improvements over MapTR.

B.3. Ablations on Auxiliary Loss

In this section, we investigate the effects of auxiliary
losses. As mentioned in the main paper, we present a
parallel branch for mask predictions, which requires inten-
sive supervision at the BEV space to construct the feature-
prominent masks. Table A3 reports the experimental re-
sults. Compared with the model without auxiliary loss,
mask construction introduces intensive pixel-level learning
and alleviates the overfitting issue to some extent, resulting
in a noteworthy +1.7 mAP improvement (57.6 v.s. 59.3).
However, simple parallel segmentation learning lacks full



use of mask features. To synergize with the vectorization
task, our mask-guided design is proposed to boost the po-
tential of mask features and obtains the best performance
with 61.4 mAP.

Strategy APped. APdiv. APbou. mAP

w/o. mask 53.1 60.0 59.5 57.6
+parallel segementation 53.3 63.0 61.6 59.3

+mask-guided design 57.4 63.5 63.3 61.4

Table A3. Ablation studies on auxiliary loss. Adding parallel seg-
mentation achieves a certain level of improvement, while mask-
guided design further enhances performance with the best result.

C. Extensive Qualitative Results

Figure A1 presents the visualization results of the learned
masks and the final predictions, in which the binary masks
are constructed to assist for the final map vectorization.
Figure A2 provides the visual comparison with recent so-
tas. Later, Figures A3 to A6 provide extensive visualization
results of our MGMap, comparing with the state-of-the-art
approach MapTR under different weather and lighting con-
ditions. Our MGMap method consistently demonstrates its
promising capabilities across various scenarios.

D. Limitations and Future Work

As shown in Figure A6, under some adverse conditions,
like low light, occlusion, and long-range perceptions, our
image-based approach still has limitations in achieving re-
liable performance. It is mainly caused by the lack of ef-
fective features and the inferior interpretation of driving
scenes. In the future, multi-modal fusion, temporal infor-
mation, and the introduction of road priors will be explored
to address the current shortcomings and obtain the vector-
ized HD map with higher precision.
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Multi-View Surrounding Images Learned Masks Ours GT

Figure A1. The visual results of the learned masks, our proposed MGMap approach and the corresponding ground truth.



MapTR BeMapNetPivotNet GTMGMap

Figure A2. Comparison with recent sota methods.



Sunny

Multi-View Surrounding Images MapTR Ours GT

Figure A3. Visualization results under the weather condition of sunny.



Multi-View Surrounding Images MapTR Ours GT

Cloudy

Figure A4. Visualization results under the weather condition of cloudy.



Rainy

Multi-View Surrounding Images MapTR Ours GT

Figure A5. Visualization results under the weather condition of rainy.



Night

Multi-View Surrounding Images MapTR Ours GT

Figure A6. Visualization results under the night condition.
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