
A. Experiment Details

A.1. Hardware and DreamBooth Training Details

All the experiments are conducted on an Ubuntu 20.04.6 LTS
(focal) environment with 503GB RAM, 10 GPUs (NVIDIA®

RTX® A5000 24GB), and 32 CPU cores (Intel® Xeon® Sil-
ver 4314 CPU @ 2.40GHz). Python 3.10.12 and Pytorch
1.13 are used for all the implementations. For the Dream-
Booth full trianing mode, we use the 8-bit Adam optimizer
[24] with β1 = 0.9 and β2 = 0.999 under bfloat16-mixed
precision and enable the xformers for memory-efficient train-
ing. For calculating prior loss, we use 200 images generated
from Stable Diffusion v2-1-base with the class prompt “a
photo of a person”. The weight for prior loss is set to 1.
For the instance prompt, we use “a photo of sks person”.
During the meta-learning process, we regularly delete the
temporary models and store the surrogates back to the CPU
to save GPU memory. It takes about 3 GPU hours to craft
perturbations for an instance under this strategy.

B. Baseline Methods and Metrics

B.1. Evaluation Metrics

In this section, we describe the evaluation metrics used in
our experiments in more detail. For our proposed CLIP-
IQAC, we calculate the CLIP score difference between “a
good photo of [class]” and “a bad photo of [class]”. For
calculating SDS and IMS-VGGNet, we leverage the APIs
for face recognition and face embedding extraction in the
deep face library [48]. In terms of graphical quality, we
found that the commonly used metric, BRISQUE [32] is not
a faithful metric when we conduct additional data transfor-
mations like Gaussian Filtering. We thus omit this score
when presenting results in the main text. For instance, the
BRISQUE score of a fully poisoned Dreambooth is better
than the clean one, as shown in Tab. 8. Among all the met-
rics considered, we found that SDS and IMS-VGG are more
aligned with our perception of evaluating Dreambooth’s per-
sonalized generation performance. The SDS score indicates
whether a subject is presented in the generated image, while
the IMS-VGGNet score measures the similarity between the
generated image and the subject. Compared to graphical
distortion, semantic distortion is more important when the
user wants to prevent the unauthorized generation of their
images. Overall, MetaCloak achieves the best performance
among all the considered baselines.
Migrating the Metrics Variance. To migrate the vari-
ance for calculating metrics, we obtain the mean and stan-
dard variance in the following manner. For the instance i
and its j-th metric, its k-th observation value is defined as
mi,j,k. For the j-th metric, the mean value is obtained with∑

i,k mi,j,k/(NiNk), where Ni is the instance number for
that particular dataset, and Nk is the image generation num-

ber. And the standard variance is obtained with the formula√∑
i,k(mi,j,k − µj)2/(NiNk), where µj is the mean of

the j-th metric. Moreover, the Wilcoxon signed-rank signifi-
cance test for the j-th metric between methods is conducted
on sequence {mi,j,k}i,k. We found that these measures pro-
vide more faithful indicators of quality change compared to
statistics solely over instances population.

C. More Experiments Results
C.1. Results under Standard Training

We present the results of MetaCloak under the standard
training setting in Tab. 5. As we can see, MetaCloak can
effectively degrade the DreamBooth’s personalized gener-
ation performance under the standard training setting. In
terms of reference-based semantic metrics, we can see that
our method is better in data protection than the previous
SOTA in terms of IMS-VGG. Since VGGFaceNet is spe-
cially trained on facial datasets and thus more aligned with
facial representation, we believe the results on IMS-VGG
are more convincing than those on IMS-CLIP. In terms of
other metrics, our method is also more effective than the
previous SoTA.

C.2. More Visualizations

We visualize the generated images of Dreambooth trained on
data perturbed by MetaCloak and other baselines in Fig. 11.
As we can see, compared to other baselines, MetaCloak can
robustly fool DreamBooth into generating images with low
quality and semantic distortion under data transformations.
In contrast, other baselines are sensitive to data transfor-
mation defenses. In this setting, DreamBooth’s generation
ability is retained since the images generated are of high
quality. These results demonstrate that MetaCloak is more
robust in defense of data transformation.

C.3. More Datasets

To validate the effectiveness of MetaCloak on non-face data,
we conduct additional experiments on the DreamBooth-
official subject dataset [43], which includes 30 subjects of
15 different classes. Nine out of these subjects are live sub-
jects (dogs and cats), and 21 are objects. Two inference
prompts are randomly selected for quality evaluation. As
shown in Tab. 6, the results demonstrate that our method
can still successfully degrade the generation performance on
those inanimate subjects.

C.4. Training DreamBooth on Replicate

We test the effectiveness of MetaCloak in the wild by training
DreamBooth on the Replicate platform [40]. The Replicate
platform is an online training-as-service platform that allows
users to upload their own images and train DreamBooth on
them. The generated image of the trained DreamBooth is



Dataset Method SDS ↓ IMSCLIP ↓ IMSVGGNet ↓ CLIP-IQAC ↓ LIQE ↓

VGGFace2

Clean 0.897 ± 0.302 0.814 ± 0.075 0.438 ± 0.658 0.456 ± 0.348 0.992 ± 0.088

ASPL 0.341 ± 0.471 0.607 ± 0.083 -0.342 ± 0.822 -0.457 ± 0.208 0.352 ± 0.477

EASPL 0.356 ± 0.475 0.586 ± 0.098 -0.455 ± 0.780 -0.489 ± 0.223 0.219 ± 0.413

FSMG 0.423 ± 0.488 0.611 ± 0.077 -0.234 ± 0.843 -0.402 ± 0.213 0.312 ± 0.464

AdvDM 0.933 ± 0.241 0.674 ± 0.081 0.111 ± 0.821 -0.177 ± 0.253 0.898 ± 0.302

Glaze 0.966 ± 0.174 0.762 ± 0.057 0.541 ± 0.544 0.012 ± 0.262 0.992 ± 0.088

PhotoGuard 0.967 ± 0.174 0.791 ± 0.064 0.548 ± 0.524 0.243 ± 0.284 1.000 ± 0.000

MetaCloak 0.296 ± 0.448 0.662 ± 0.073 -0.051 ± 0.838 -0.380 ± 0.256 0.180 ± 0.384

CelebA-HQ

Clean 0.810 ± 0.389 0.763 ± 0.119 0.181 ± 0.784 0.470 ± 0.264 0.984 ± 0.124

ASPL 0.809 ± 0.389 0.669 ± 0.079 -0.238 ± 0.825 -0.195 ± 0.275 0.883 ± 0.322

EASPL 0.761 ± 0.421 0.656 ± 0.066 -0.346 ± 0.817 -0.226 ± 0.268 0.867 ± 0.339

FSMG 0.684 ± 0.462 0.654 ± 0.084 -0.445 ± 0.781 -0.169 ± 0.255 0.773 ± 0.419

AdvDM 0.849 ± 0.354 0.760 ± 0.062 0.331 ± 0.673 0.323 ± 0.287 1.000 ± 0.000

Glaze 0.864 ± 0.338 0.784 ± 0.097 0.230 ± 0.756 0.486 ± 0.214 0.992 ± 0.088

PhotoGuard 0.967 ± 0.174 0.805 ± 0.072 0.471 ± 0.557 0.424 ± 0.265 0.992 ± 0.088

MetaCloak 0.407 ± 0.485 0.666 ± 0.071 -0.654 ± 0.670 -0.354 ± 0.191 0.406 ± 0.491

Table 5. Results of different methods under the Stand. Training setting with the corresponding std (±) on VGGFace2 and CelebA-HQ.

shown in Fig. 6. As we can see, MetaCloak can effectively
degrade DreamBooth’s personalized generation performance
in this setting. As can be seen, MetaCloak can effectively
degrade the personalized generation performance of Dream-
Booth under both Full-FT and LoRA-FT settings, demon-
strating that MetaCloak can seriously threaten Dreambooth’s
online training services.

C.5. More Results on Adversarial Purification

In the SR defense, we first conduct image resizing with a
scale factor of 1/4 and then use the SR model to reconstruct
the image. In the TVM defense, we first resize the image to
a size of 64x64 for computation feasibility. Then, we use the
TVM model to reconstruct the image and then conduct two
super-resolution processes and one resize process to align
the image size with the original image. The DreamBooth
trained on data purificated by JPEG compression, SR, and
TVM are shown in Fig. 8. As we can see, SR defense
is the only one that can effectively purify the adversarial
perturbation while maintaining the image quality. Compared
to SR defense, TVM defense distorts the face significantly,
and JPEG defense introduces some artifacts to the image.
Details of TVM optimization. We implemented the TVM
defense in the following steps:
1. Resize the instance image to 64 × 64 pixels. This is

done for the computational feasibility of the optimization
problem.

2. Generate a random dropout mask X ∈ R64×64×3 using
a Bernoulli distribution with probability p = 0.02. This

represents the pixel dropout rate.
3. Solve the TVM optimization problem:

min
Z
||(1−X)⊙ (Z − x)||2 + λTV TV2(Z), (11)

where x is the original image, Z is the reconstructed one,
and λTV is the weight on TV term. The first term ensures
Z stays close to the original image x, and the second term
minimizes the total variation, which reduces noise and
enforces smoothness.

4. Reshape the optimized Z back to the original size 64×
64× 3.

5. Conduct two super-resolution steps (with a resizing pro-
cess in the middle) to upsample to 512× 512 pixels.

More Results against Advanced Purification. To demon-
strate the effectiveness of our method against the latest pu-
rification, we additionally present the performance of Meta-
Cloak against two more recent purification methods, Diff-
Pure [34] and IMPRESS [19] in Tab. 7. We set the purifi-
cation iteration for IMPRESS as N = 3k, and the optimal
perturbation time steps for DiffPure as t∗ = 8. The re-
sults show that these purifications still can’t fully recover
the original generation performance, demonstrating Meta-
Cloak’s robustness.

C.6. Trade-off of Effectiveness and Stealthiness

To study the effectiveness of MetaCloak under different
radii, we conducted experiments with different radii under
the Trans. Training setting. As shown in Tab. 9, increasing



Table 6. More results of MetaCloak on the Dreambooth-official dataset under the Trans. Training setting. The identifier S∗ is set to sks.

Figure 6. Effectiveness of our method in the wild. Dreambooth training on the replicate platform under two training settings, including full
fine-tuning and LoRA-based fine-tuning.



Defenses SDS IMSCLIP IMSVGG CLIP-IQAC LIQE

× 0.401 ± 0.485 0.641 ± 0.118 -0.225 ± 0.852 -0.314 ± 0.266 0.445 ± 0.497

+IMPRESS 0.541 ± 0.493 0.691 ± 0.080 -0.074 ± 0.858 -0.307 ± 0.222 0.789 ± 0.408

+DiffPure 0.743 ± 0.430 0.640 ± 0.081 0.361 ± 0.673 0.020 ± 0.289 0.938 ± 0.242

Oracle* 0.903 0.790 0.435 0.329 0.984

Table 7. Resilience against advanced defenses on VGGFace2 under
Trans. Training. Oracle* denotes training on clean data.

the radius can effectively improve the effectiveness of Meta-
Cloak. However, when the radius is too large, the stealthi-
ness of injected noise will also be compromised since some
specific noise patterns will overwhelm the image content,
as shown in Fig. 7. We conclude that the study of how to
further improve the stealthiness of MetaCloak under large
radii is an important future direction.

C.7. Resilience under Low Poisoning Ratio

To study the effectiveness of MetaCloak under low poisoning
rates, we conduct experiments with different poisoning rates
from {0%, 25%, 50%, 75%, 100%} under the two training
settings. As shown in Tab. 8 and Fig. 10, increasing the
poisoning rate can effectively improve the effectiveness of
MetaCloak. However, when the poisoning rate is too low, the
effectiveness of MetaCloak will be compromised since there
is some knowledge leakage. How to effectively protect data
under a low poisoning rate is an important future direction.

C.8. Improving Stealthiness with ReColorAdv

To further improve the stealthiness of our method, we explore
replacing the ℓ∞-norm constrained attack with ReColorAdv
[25], which generates adversarial images by applying a sin-
gle pixel-wise function fg with parameters g to every color
value on the LUV color space. To make the perturbation
imperceptible, fg is bounded such that for each pixel ci,
∥fg(ci) − ci∥∞ ≤ ϵ, and ϵ is set as 0.06, 0.08 and 0.10
respectively to observe the method’s performance under dif-
ferent restrictions. To enforce the bound, we optimize the
parameters g with PGD, projecting g back to the ϵ ball after
every gradient step. The results are shown in Fig. 13. As we
can see from the figure, ReColorAdv crafts more uniform
and global perturbations, which preserves dependencies be-
tween features such as the relationship between light and
shadow and the shape boundaries. Unlike the ℓ∞-norm at-
tack, the defense effect of ReColorAdv is reflected in the odd
color of the generated images instead of collapsed patterns
and strips. However, ReColorAdv becomes less effective
when the inferring prompt is different from the prompt used
in the perturbation crafting process, which is "A photo of
sks person" in our case. In conclusion, we show that the
ReColorAdv is promising to improve the stealthiness of our
method further.

C.9. Understanding Why MetaCloak works

To understand why MetaCloak works, we visualize the
learned noise and conduct wavelet analysis on the noise.
We first visualize the original images, perturbed images, and
the corresponding noise in Fig. 14. As can be seen from
Fig. 15, the noise learned by MetaCloak is significantly
sharper than the noise generated by the previous method.
Thus, the pattern of our noise is less likely to be obscured
and turn blurry when encountering defensive measures such
as Gaussian transformation and is more likely to fool subject-
driven generative models such as Dreambooth. We further
plot the distribution of the scales of the learned noise in
Fig. 16. As can be observed, the scales of the noise are
polarized, clustering at both extreme values, and thus more
resistant to perturbations.



Setting Portion (clean/poison) BRISQUE SDS IMSCLIP IMSVGG CLIP-IQA CLIP-IQA-C

Stand.
Training

Clean 14.610 ± 4.560 0.958 ± 0.060 0.781 ± 0.072 0.314 ± 0.427 0.818 ± 0.045 0.397 ± 0.113
Mostly Clean(3/1) 14.700 ± 10.405 0.928 ± 0.047 0.785 ± 0.042 0.460 ± 0.325 0.799 ± 0.109 0.410 ± 0.203
Half-and-half (2/2) 16.123 ± 9.162 0.897 ± 0.103 0.785 ± 0.029 0.362 ± 0.315 0.733 ± 0.093 0.267 ± 0.191
Mostly Poison(1/3) 17.801 ± 5.931 0.794 ± 0.121 0.761 ± 0.063 0.225 ± 0.468 0.670 ± 0.061 0.113 ± 0.110
Fully poisoned (4/0) 19.868 ± 2.051 0.068 ± 0.116 0.581 ± 0.044 -0.299 ± 0.640 0.360 ± 0.085 -0.520 ± 0.119

Trans.
Training

Clean 19.063 ± 4.070 0.934 ± 0.092 0.756 ± 0.104 0.299 ± 0.357 0.750 ± 0.083 0.286 ± 0.042
Mostly Clean(3/1) 24.385 ± 9.997 0.911 ± 0.077 0.794 ± 0.044 0.474 ± 0.216 0.763 ± 0.068 0.346 ± 0.129
Half-and-half (2/2) 25.809 ± 0.996 0.840 ± 0.062 0.769 ± 0.049 0.424 ± 0.194 0.715 ± 0.122 0.305 ± 0.247
Mostly Poison(1/3) 23.588 ± 5.067 0.655 ± 0.299 0.728 ± 0.070 0.197 ± 0.499 0.592 ± 0.146 0.066 ± 0.312
Fully poisoned (4/0) 12.982 ± 0.935 0.486 ± 0.156 0.668 ± 0.079 -0.277 ± 0.636 0.534 ± 0.058 -0.252 ± 0.030

Table 8. Performance of MetaCloak under low poisoning rate. The number in the portion column denotes the portion of clean images.

Radius r BRISQUE SDS IMSCLIP IMSVGG CLIP-IQAC LIQE

Clean 21.783 ± 12.540 0.903 ± 0.291 0.790 ± 0.076 0.435 ± 0.657 0.329 ± 0.354 0.984 ± 0.124

4/255 19.810 ± 8.828 0.832 ± 0.369 0.760 ± 0.094 0.207 ± 0.815 -0.095 ± 0.318 0.883 ± 0.322

8/255 17.271 ± 8.658 0.619 ± 0.480 0.705 ± 0.118 0.016 ± 0.856 -0.278 ± 0.311 0.625 ± 0.484

16/255 17.794 ± 6.707 0.393 ± 0.476 0.668 ± 0.077 0.067 ± 0.842 -0.448 ± 0.203 0.359 ± 0.480

32/255 16.962 ± 5.707 0.163 ± 0.367 0.628 ± 0.082 -0.081 ± 0.851 -0.532 ± 0.178 0.266 ± 0.442

Table 9. Performance of MetaCloak under the Trans. Training setting with different perturbation radii.



Figure 7. Visualization of perturbed images from VGGFace2 under different attack radii.



Figure 8. Visualizations of generated images of Dreambooth trained with various adversarial purifications under Trans. Training setting.



Figure 9. Performance of MetaCloak under different perturbation radii under Trans. Training setting.



Figure 10. Performance of MetaCloak under different poisoning rates R. The Inferring prompt is “A dslr portrait of sks person”.



Figure 11. Visualization of Dreambooth’s generated images on VGGFace2. DreamBooths are trained on data perturbed by different methods
under Trans. Training. The first column denotes the Dreambooth trained on clean data. The inferring prompt is “A photo of sks person”.



Figure 12. Effect of each component in MetaCloak on the quality of the generated images. The inferring prompt is “a dslr photo of a person”.



Figure 13. The Perturbed images by ReColorAdv and the generated images of DreamBooth trained on perturbed data.



Figure 14. The original images, perturbed images, and the corresponding noise generated by MetaCloak on a sampled instance on the
VGGFace2 dataset.



(a) ASPL

(b) MetaCloak

Figure 15. Comparison of wavelet decomposition of noise generated by ASPL and MetaCloak.



Figure 16. The density of noise scale generated by MetaCloak. We re-scale the pixel value of noise to the range [0, 255] for visualization.


