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Supplementary Material

In this supplementary material, Sec. A1 provides the de-
tailed explanations of our proposed MISC filter. Sec. A2
illustrates the detailed architecture of the motion estimation
and residual reconstruction networks. Sec. A3 analyzes the
limitations of our method. Finally, Sec. A4 shows more
quantitative and qualitative comparison results.

A1. Detailed explanations
As described in Sec. 3.2 of the main paper, we propose
a motion-guided alignment (MGA) module for aligning
motion-induced blurring to the motion middle along the es-
timated flow direction and a separable collaborative filter-
ing (SCF) module for predicting the parameters to filter the
aligned image as output. In this section, we elaborate on
the theoretical relationship between its filtering process and
motion deblurring.
A1.1. Motion-guided alignment

Motion blur often occurs by the object displacement in an
extremely short period. To generate a sharper image, we
propose to predict the motion field that generates blurring
by a flow estimator and use bi-directional warping to align
the blur to the middle moment along the motion direction.

First, MGA predicts the motion field that produces blur
by a flow estimator and utilizes bi-directional warping to
align the blur to the middle moment along the motion direc-
tion. This practice extends the range of handling blur and
mitigates the blur induced by fast motion between frames
to some extent. At the same time, bi-directional alignment
can aggregate the ghosting of moving objects and sharpen
texture details in the image.

Second, to avoid the problem of pixel occlusion [3, 29]
in different directions during the bi-directional warping, we
incorporate a mask estimator to generate mask as a modu-
lation mechanism to optimize bi-directional pixel synthesis.
This practice of introducing a mask is intended to provide
a second selection mechanism of pixels during the warping
process to avoid generating incorrect textures.
A1.2. Separable collaborative filtering.

To alleviate the limitations of multiple degrees of freedom
in filter parameter settings when capturing complex mo-
tions, we collaboratively obtain the filter parameters by
using kernel, weight, and offset estimators. Finally, the
blur is removed from the image by the filtering algorithm.
This module aims to find reference pixels with blurred re-
gions around the pixel to be reconstructed, thus recovering
a sharper image. Unlike existing filtering algorithms that
rely on pre-defined parameters, the predicted parameters

(i.e., kernel, weight, and offset) in our method are strongly
correlated with the content of the input image and thus have
a stronger motion capture capability.

Among these parameters, “kernel” is the initial weight
of the filter, which is generated adaptively depending on the
content of the blur in different regions. “Offset” is the vec-
tor direction that induces the motion of the local blur, and
it locates the boundary of the blur around the pixel to be
reconstructed and captures the blur’s shape. “Weight” is
similar to the attention mechanism and is used to weigh the
contents of all reference pixels. This implies a quadratic ad-
justment of kernel content aggregation, increasing the non-
linear representation of the model.

A2. Architecture Details
As described in Sec. 3 of the main paper, our method in-
troduces an additional motion estimation network similar to
the residual reconstruction network for estimating the filter
parameters. To ensure the non-local motion capture capabil-
ity of the motion estimation network and the reconstruction
capability of the residual reconstruction network, we use the
same U-Net structure, frequency-domain learning scheme,
and loss function as prior works [40].

In this section, we illustrate the detailed architecture of
the lightweight U-Net as shown in Fig. A1. The entire net-
work is based on the U-Net architecture. We follow the
existing approach [40] to extract features by stacking some
Res FFT-Conv Blocks on each scale. Each block contains
a frequency-domain learning branch that learns non-local
features in the frequency domain after the Fourier transform
by 1× 1 convolution layers without extending the receptive
field of the block.

A3. Limitation
Although our MISC Filter can handle the complex motion
of each region well, the number of filter parameters that
need to be predicted increases when the image resolution
is larger. Therefore, it is expected to build a filter bank to
fix the number of operators so as to avoid increasing com-
putational costs significantly.

A4. More Results
In this section, first, we provide more validation of the
model generalization. Secondly, the performance of the
proposed MISC filter on different residual reconstruction
models is compared. Thirdly, we construct ablations for
the residual reconstruction network. Finally, we show more
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Figure A1. Structures of the motion estimation and residual recon-
struction networks.

visualization results.

Validation of model generalizability. We further vali-
date the generalization ability of our method on additional
RealBlur-R [48] and RealBlur-J [48] datasets using GoPro
trained models. As shown in Tab. A1, since we remove mo-
tion blur directly in the image space, our method achieves
comparable performance to UFPNet [19] with fewer num-
ber of parameters. This superiority proves the generaliza-
tion ability of our method.

Comparison on different residual reconstruction net-
works. As described in Sec. 3.2 of the main paper, our
MISC filter can also be used for other methods in image
space as a plug-and-play module. Therefore, we plug the
proposed MISC filter into three state-of-the-art residual re-
construction networks [7, 12, 40] to verify its generaliza-
tion. As shown in Tab. A2, our MISC filter delivers per-
formance improvements of more than 0.3 dB on all three
state-of-the-art deblurring models. This proves the general-
izability of our method.

Ablation about residual reconstruction network. Both
filtering in image space and residual reconstruction in fea-
ture space are important factors in restoring sharp images.
In this section, we conduct ablation experiments on the
residual reconstruction network to demonstrate the impor-
tance of the motion estimation network we used. As shown
in Tab. A3, even without using the residual reconstruction
network, our method can achieve a PSNR of 31.87 just by
filtering the image space. When adding MISC filtering to

Method #P(M)
RealBlur-R RealBlur-J

PSNR/SSIM PSNR/SSIM

SRN [56] 6.8 35.66/0.947 28.56/0.867
DeblurGAN [27] - 33.79/0.903 27.97/0.834
DMPHN [67] 21.7 35.70/0.948 28.42/0.860
DeblurGANv2 [28] 60.9 35.26/ 0.944 28.70/ 0.866
MPRNet [65] 20.1 35.99/0.952 28.70/ 0.873
MIMO-Unet+ [12] 16.1 35.54/0.947 27.63/0.837
MAXIM [59] - 35.78/0.947 28.83/0.875
Uformer-B [62] 50.9 36.19/0.956 29.09/0.886
Restormer [66] 26.1 36.19/0.957 28.96/0.879
MSDI-Net [30] 135.4 35.88/0.952 28.59/0.869
Stripformer [57] 26.1 36.07/0.952 28.82/0.876
NAFNet [7] 67.9 35.50/0.953 28.32/0.857
DeepRFT+ [40] 23 35.86/0.950 28.97/0.884
UFPNet [19] 80.3 36.25/0.953 29.87/0.884

MISC Filter(Ours) 16.0 36.26/0.957 29.35/0.886

Table A1. Quantitative comparison on the RealBlur-R [48], and
RealBlur-J [48] dataset. We use the models trained on the Go-
Pro [41] dataset. #P indicates the parametersy. Red indicates the
best and blue indicates the second best performance (best viewed
in color).

Method GoPro

PSNR SSIM

MIMO-Unet [12] 31.73 0.951
MIMO-Unet+MISC Filter 32.13 0.954

NAFNet [7] 31.79 0.951
NAFNet+MISC Filter 32.09 0.954

DeepRFT [40] 32.40 0.955
DeepRFT+MISC Filter 32.83 0.960

Table A2. Quantitative comparison on different residual recon-
struction networks.

the residual reconstruction network, the performance im-
proves by 0.4 dB, demonstrating the filter’s strong ability to
remove motion blur.

RCN MEN PSNR SSIM

✓ 32.40 0.955
✓ 31.87 0.945

✓ ✓ 32.83 0.960

Table A3. Results of ablation studies on residual reconstruc-
tion network. RCN: residual reconstruction network. MEN: mo-
tion estimation network. our MISC Filter can be interpreted as
“RCN+MEN”.



More Visualization Results. To further verify the effec-
tiveness of our method, we show more comparison re-
sults among the proposed MISC filter and other advanced
methods on three different benchmarks. The results on
RealBlur-J [48], GoPro [41], and HIDE [50] are shown
in Fig. A2, Fig. A3, and Fig. A4, respectively.
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Figure A2. Visual results on RealBlur-J [48] dataset. The method is shown at the bottom of each case. Zoom in to see better visualization.
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Figure A3. Visual results on GoPro [41] dataset. The method is shown at the bottom of each case. Zoom in to see better visualization.
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Figure A4. Visual results on HIDE [50] dataset. The method is shown at the bottom of each case. Zoom in to see better visualization.
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