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A. Multi-Dataset Configuration

In this section, we elaborate on the details of combin-
ing multiple heterogeneous LiDAR segmentation datasets
to train a universal LiDAR segmentation model.

A.1. Overview

In this work, we resort to ten driving datasets for achiev-
ing i) multi-dataset training and evaluations, ii) knowledge
transfer and generalization, and iii) out-of-distribution gen-
eralization. A summary of the datasets used in this work
is shown in Tab. A. For multi-dataset training and evalua-
tions, we use the LiDAR and camera data from the nuScenes
[4, 9], SemanticKITTI [1], and Waymo Open [28] datasets.
• nuScenes is a large-scale public dataset for autonomous

driving, created by Motional (formerly nuTonomy). It
is widely used in the research and development of au-
tonomous vehicles and related technologies. The dataset
includes a comprehensive range of sensor data crucial for
autonomous driving. It typically contains data from mul-
tiple cameras, LiDAR, RADAR, GPS, IMU, and other
sensors. This multimodal data collection is essential for
developing and testing algorithms for perception, predic-
tion, and motion planning in autonomous vehicles. One
of the strengths of the nuScenes dataset is its diversity.
The data encompasses various driving conditions, includ-
ing different times of day, weather conditions, and ur-
ban environments. This diversity is crucial for train-
ing robust algorithms that can handle real-world driving
scenarios. In this work, we use the LiDAR semantic
and panoptic segmentation data from the lidarseg1 sub-
set in the nuScenes dataset, which includes segmenta-
tion labels for the entire nuScenes dataset, encompass-
ing thousands of scenes, each a 20-second clip captured
from a driving vehicle in various urban settings. 32
classes are manually labeled, covering a wide range of
objects and elements in urban scenes, where 16 of them
are typically adopted in evaluating the segmentation per-
formance. More details of this dataset can be found at
https://www.nuscenes.org/nuscenes.

• SemanticKITTI is a well-known dataset in the field of
autonomous driving and robotics, specifically tailored for
the task of semantic and panoptic segmentation using Li-
DAR point clouds. It is an extension of the original
KITTI Vision Benchmark Suite2 [10], with annotations
for over 20 sequences of driving scenarios, each contain-
ing tens of thousands of LiDAR scans. The dataset covers
a variety of urban and rural scenes. This includes city
streets, residential areas, highways, and country roads,
providing a diverse set of environments for testing al-
gorithms. The dataset provides labels for 28 different
semantic classes, including cars, pedestrians, bicycles,

1https://www.nuscenes.org/lidar-segmentation.
2https://www.cvlibs.net/datasets/kitti.
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Table A. Summary of the datasets used in this work. We split different datasets into three categories: i) The nuScenes [9], SemanticKITTI
[1], and Waymo Open [28] datasets are used for multi-dataset training and evaluations. ii) The RELLIS-3D [14], SemanticPOSS [25],
SemanticSTF [32], SynLiDAR [31], and DAPS-3D [15] datasets are used for knowledge transfer and generalization (w/ fine-tuning). iii)
The SemanticKITTI-C [17] and nuScenes-C [17] datasets are used for out-of-distribution generalization (w/o fine-tuning).

Dataset Summary

nuScenes [9] SemanticKITTI [1] Waymo Open [28] RELLIS-3D [14] SemanticPOSS [25]
[Link] [Link] [Link] [Link] [Link]

SemanticSTF [32] SynLiDAR [31] DAPS-3D [15] SemanticKITTI-C [17] nuScenes-C [17]
[Link] [Link] [Link] [Link] [Link]

various types of vegetation, buildings, roads, and so on.
19 classes are typically adopted for evaluation. In total,
around 4549 million points are annotated, and such ex-
tensive labeling provides a dense coverage for each Li-
DAR scan. More details of this dataset can be found at
http://semantic-kitti.org.

• Waymo Open is a large dataset for autonomous driving,
provided by Waymo LLC, a company that specializes in
the development of self-driving technology. This dataset
is particularly notable for its comprehensive coverage
of various scenarios encountered in autonomous driving.
The data is collected using Waymo’s self-driving vehi-
cles, which are equipped with an array of sensors, includ-
ing high-resolution LiDARs, cameras, and radars. This
multimodal data collection allows for comprehensive per-
ception modeling. The dataset includes a wide range of
driving environments and conditions, such as city streets,
highways, and suburban areas, captured at different times
of day and in various weather conditions. This variety
is crucial for developing robust autonomous driving sys-
tems. In this work, we use its 3D Semantic Segmenta-
tion subset, which specifically provides point-level an-
notations for 3D point clouds generated by LiDAR sen-
sors. 22 semantic classes are used during evaluation, en-
compassing a wide range of object classes, such as vehi-

cles, pedestrians, and cyclists, as well as static objects like
road signs, buildings, and vegetation. More details of this
dataset can be found at https://waymo.com/open.

To validate that the learned features from our multi-
dataset training setup are superior to that of the singe-
dataset training in knowledge transfer and generalization,
we conduct fine-tuning experiments on the following five
datasets: RELLIS-3D [14], SemanticPOSS [25], Semantic-
STF [32], SynLiDAR [31], and DAPS-3D [15].

• RELLIS-3D is a dataset focusing on off-road environ-
ments for autonomous navigation and perception, de-
veloped by Texas A&M University. It contains mul-
timodal sensor data, including high-resolution LiDAR,
RGB imagery, and GPS/IMU data, providing a compre-
hensive set for developing and evaluating algorithms for
off-road autonomous driving. The dataset features di-
verse terrain types, such as grasslands, forests, and trails,
offering unique challenges compared to urban scenar-
ios. RELLIS-3D includes annotations for 13 semantic
classes, including natural elements and man-made ob-
jects, crucial for navigation in off-road settings. More
details of this dataset can be found at http://www.
unmannedlab.org/research/RELLIS-3D.

• SemanticPOSS focuses on panoramic LiDAR scans,
which include urban scenes, highways, and rural areas.
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The dataset contains annotations for 14 semantic classes,
covering vehicles, pedestrians, cyclists, and various road
elements. Its panoramic view provides a 360-degree un-
derstanding of the vehicle’s surroundings, which is ben-
eficial for comprehensive scene analysis. More details
of this dataset can be found at https://www.poss.
pku.edu.cn/semanticposs.

• SemanticSTF studies the 3D semantic segmentation of
LiDAR point clouds under adverse weather conditions,
including snow, rain, and fog. It is built from the real-
world STF [3] dataset with point-wise annotations of 21
semantic categories. The original LiDAR data in STF
was captured by a Velodyne HDL64 S3D LiDAR sen-
sor. In total, SemanticSTF selected 2076 scans for dense
annotations, including 694 snowy, 637 dense-foggy, 631
light-foggy, and 114 rainy scans. More details of this
dataset can be found at https://github.com/
xiaoaoran/SemanticSTF.

• SynLiDAR is a synthetic dataset for LiDAR-based se-
mantic segmentation. It is generated using advanced
simulation techniques to create realistic urban, suburban,
and rural environments. SynLiDAR offers an extensive
range of annotations for a variety of classes, including
dynamic objects like vehicles and pedestrians, as well
as static objects like buildings and trees. This dataset
is useful for algorithm development and testing in sim-
ulated environments where real-world data collection is
challenging. More details of this dataset can be found at
https://github.com/xiaoaoran/SynLiDAR.

• DAPS-3D is a dataset focusing on dynamic and static
point cloud segmentation. It includes LiDAR scans from
diverse urban environments, providing detailed annota-
tions for dynamic objects such as vehicles, pedestrians,
and cyclists, as well as static objects like buildings, roads,
and vegetation. DAPS-3D is designed to advance re-
search in dynamic scene understanding and prediction
in autonomous driving, addressing the challenges posed
by moving objects in complex urban settings. More de-
tails of this dataset can be found at https://github.
com/subake/DAPS3D.

Meanwhile, we leverage the SemanticKITTI-C and
nuScenes-C datasets in the Robo3D benchmark [17] to
probe the out-of-training-distribution robustness of

• SemanticKITTI-C is built upon the validation set of
the SemanticKITTI [1] dataset. It is designed to cover
out-of-distribution corruptions that tend to occur in the
real world. A total of eight corruption types are bench-
marked, including fog, wet ground, snow, motion blur,
beam missing, crosstalk, incomplete echo, and cross-
sensor cases. For each corruption, three subsets that
cover different levels of corruption severity are created,
i.e. easy, moderate, and hard. The LiDAR segmentation
models are expected to be trained on the clean sets while

tested on these eight corruption sets. The performance
degradation under corruption scenarios is used to mea-
sure the model’s robustness. Two metrics are designed
for such measurements, namely mean Corruption Error
(mCE) and mean Resilience Rate (mRR). mCE calculates
the relative robustness of a candidate model compared to
the baseline model, while mRR computes the absolute
performance degradation of a candidate model when it
is tested on clean and corruption sets, respectively. In
total, there are 97704 LiDAR scans in SemanticKITTI-
C, which follow the original dense annotations in Se-
manticKITTI. More details of this dataset can be found
at https://github.com/ldkong1205/Robo3D.

• nuScenes-C shares the same corruption and severity level
definitions with SemanticKITTI-C and is built upon the
validation set of the nuScenes [9] dataset. In total, there
are 144456 LiDAR scans in nuScenes-C, which follow
the original dense annotations in nuScenes. More de-
tails of this dataset can be found at https://github.
com/ldkong1205/Robo3D.

A.2. Statistical Analysis

In this section, we conduct a comprehensive statistical
analysis of the nuScenes [4, 9], SemanticKITTI [1], and
Waymo Open [28] datasets to showcase the difficulties in
merging heterogeneous LiDAR and camera data.

A.2.1 nuScenes

The LiDAR point clouds in the nuScenes [4, 9] dataset
are acquired by a Velodyne HDL32E with 32 beams, 1080
(+/−10) points per ring, 20Hz capture frequency, 360-
degree Horizontal FOV, +10-degree to −30-degree Verti-
cal FOV, uniform azimuth angles, a 80m to 100m range,
and up to around 1.39 million points per second. There are
a total of 16 semantic classes in this dataset. The distribu-
tions of these classes across a 50 meters range are shown
in Tab. B. As can be seen, most semantic classes distribute
within the 20 meters range. The dynamic classes, such as
bicycle, motorcycle, bus, car, and pedestrian,
show a high possibility of occurrence at round 5 meters to
10 meters. The static classes, on the contrary, are often dis-
tributed across a wider range. Typically examples include
terrain and manmade. Different semantic classes ex-
hibit unique distribution patterns around the ego-vehicle.

A.2.2 SemanticKITTI

The LiDAR point clouds in the SemanticKITTI [1]
dataset are acquired by a Velodyne HDL-64E with 64
beams, providing high-resolution data. The Velodyne HDL-
64E features a 360-degree Horizontal Field of View (FOV),
a Vertical FOV ranging from +2 to −24.33 degrees, and an
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Table B. The statistical analysis of the 16 semantic classes in the nuScenes [9] dataset. Statistics are calculated from the training split of
the dataset. Each violin plot shows the LiDAR point cloud density distribution in a 50 meters range. Best viewed in colors.

nuScenes (16 classes)

barrier bicycle bus car

construction-vehicle motorcycle pedestrian traffic-cone

trailer truck driveable-surface other-flat

sidewalk terrain manmade vegetation

angular resolution of approximately 0.08−0.4 degrees (ver-
tically) and 0.08 − 0.35 degrees (horizontally). The sensor
operates at a 10Hz capture frequency and can detect objects
within a range of up to 120m, delivering densely sampled,
detailed point clouds with approximately 1.3 million points
per second. There are a total of 19 semantic classes in this
dataset. The distributions of these classes across a 50 me-
ters range are shown in Tab. C. It can be seen from these
statistical plots that the distributions are distinctly differ-
ent from each other; points belonging to the road class
are intensively distributed in between 5 meters to 10 me-
ters around the ego-vehicle, while those dynamic classes
like bicyclist, motorcyclist, other-vehicle
and truck, tend to appear in a wider range. Similar to
the nuScenes dataset, the 19 classes in SemanticKITTI also

exhibit distinct patterns of occurrence in the driving scenes.

A.2.3 Waymo Open

The 3D semantic segmentation subset of the Waymo
Open [28] dataset features LiDAR point clouds obtained
using Waymo’s proprietary LiDAR sensors, which include
mid-range and short-range LiDARs. There are five LiDARs
in total - one mid-range LiDAR (top) and four short-range
LiDARs (front, side left, side right, and rear), where the
mid-range LiDAR has a non-uniform inclination beam an-
gle pattern. The range of the mid-range LiDAR is trun-
cated to a maximum of 75 meters. The range of the
short-range LiDARs is truncated to a maximum of 20 me-
ters. The strongest two intensity returns are provided for
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Table C. The statistical analysis of the 19 semantic classes in the SemanticKITTI [1] dataset. Statistics are calculated from the training
split of the dataset. Each violin plot shows the LiDAR point cloud density distribution in a 50 meters range. Best viewed in colors.

SemanticKITTI (19 classes)

car bicycle motorcycle truck

other-vehicle person bicyclist motorcyclist

road parking sidewalk other-ground

building fence vegetation trunk

terrain pole traffic-sign

all five LiDARs. An extrinsic calibration matrix trans-
forms the LiDAR frame to the vehicle frame. The point
clouds of each LiDAR in Waymo Open are encoded as a
range image. Two range images are provided for each Li-
DAR, one for each of the two strongest returns. There are
four channels in the range image, including range, inten-
sity, elongation, and occupancy. The distributions of these

classes across a 50 meters range are shown in Tab. D. As
can be seen. the class distributions of Waymo Open are
more diverse than those from nuScenes and SemanticKITTI.
Some semantic classes, including motorcyclist,
pedestrian, construction-cone, vegetation,
and tree-trunk, are distributed across almost the entire
driving scenes captured by the five LiDAR sensors.
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Table D. The statistical analysis of the 22 semantic classes in the Waymo Open [28] dataset. Statistics are calculated from the training
split of the dataset. Each violin plot shows the LiDAR point cloud density distribution in a 50 meters range. Best viewed in colors.

Waymo Open (22 classes)

car truck bus other-vehicle

motorcyclist bicyclist pedestrian traffic-sign

traffic-light pole construction-cone bicycle

motorcycle building vegetation tree-trunk

curb road lane-marker other-ground

walkable sidewalk
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B. Multi-Task Configuration
In this section, we supplement more details of our de-

sign and implementation toward multi-task (semantic and
panoptic) LiDAR segmentation.

B.1. Overview

A proper pipeline design could enable the model to gen-
erate suitable predictions to fulfill multiple tasks simultane-
ously. In the context of LiDAR segmentation, we are es-
pecially interested in unifying semantic and panoptic seg-
mentation of LiDAR point clouds. Such a holistic way of
3D scene understanding is crucial for the safe perception in
autonomous vehicles.

B.2. Mean Shift

In this work, we enhance the versatility of our frame-
work in an end-to-end fashion through the integration of a
multi-tasking approach. This adaptation involves the mod-
ification of the instance extractor on top of the semantic
predictions, which enables a dual output for both LiDAR
semantic and panoptic segmentation. Specifically, draw-
ing inspiration from DS-Net [11, 12], our instance extractor
comprises an instance head, succeeded by a point clustering
step. The instance head encompasses a sequence of multi-
layer perceptrons designed to predict the offsets between
instance centers. This point clustering step strategically em-
ploys semantic predictions to filter out stuff points, thereby
retaining only those associated with thing instances, such as
pedestrian, car, and bicyclist. Subsequently, the
remaining points undergo mean-shift clustering [6], utiliz-
ing features from the instance head to discern distinct in-
stances. This meticulous process enhances the framework’s
capacity for accurate instance segmentation. The band-
width for mean-shift in the SemanticKITTI and Panoptic-
nuScenes datasets is set to 1.2 and 2.5, respectively.

C. Additional Implementation Details
In this section, we provide additional details to assist the

implementation and reproduction of the approach proposed
in the main body of this paper.

C.1. Datasets

In our multi-dataset training pipeline, we train our
M3Net framework on the three most popular large-scale
driving datasets, i.e., the SemanticKITTI [1], nuScenes [9],
and Waymo Open [28] datasets. These three datasets con-
sist of 19130, 29130, and 23691 training LiDAR scans,
and 4071, 6019, and 5976 validation LiDAR scans, respec-
tively. Besides, we leverage the synchronized camera im-
ages from the corresponding datasets as our 2D inputs in
the M3Net training pipeline for cross-modality alignments.
The SemanticKITTI, nuScenes, and Waymo Open datasets

contain 19130, 174780, and 118455 camera images in the
train set, respectively, where SemanticKITTI has single-
camera (front-view) data, nuScenes is with a six-camera
(three front-view and three back-view) systems, and Waymo
Open has five camera views in total.

For multi-task experiments on SemanticKITTI [1] and
Panoptic-nuScenes [9], we follow the official data prepa-
ration procedures to set up the training and evaluations.
Specifically, these two datasets share the same amount of
data with their semantic segmentation subsets, i.e., 19130
and 29130 training LiDAR scans, and 4071 and 6019 vali-
dation LiDAR scans, respectively. Each LiDAR scan is as-
sociated with a panoptic segmentation map which indicates
the instance IDs. For additional details, kindly refer to the
original papers.

For the knowledge transfer fine-tuning experiments on
the RELLIS-3D [14], SemanticPOSS [25], SemanticSTF
[32], SynLiDAR [31] and DAPS-3D [15] datasets, we fol-
low the same procedure as Seal [21] to prepare the training
and validation sets. Kindly refer to the original paper for
more details on this aspect.

For the out-of-training-distribution generalization exper-
iments on SemanticKITTI-C and nuScenes-C, we follow the
same data preparation procedure in Robo3D [17]. There
are eight different corruption types in each dataset, includ-
ing fog, wet ground, snow, motion blur, beam missing,
crosstalk, incomplete echo, and cross-sensor cases, where
each corruption type contains corrupted data from three
severity levels. In total, there are 97704 LiDAR scans in
SemanticKITTI-C and 144456 LiDAR scans in nuScenes-
C. For additional details, kindly refer to the original paper.

C.2. Text Prompts

In this work, we adopt the standard templates along with
specified class text prompts to generate the CLIP text em-
bedding for the three datasets used in our multi-dataset
training pipeline. Specifically, the text prompts associ-
ated with the semantic classes in the nuScenes [9], Se-
manticKITTI [1], and Waymo Open [28] datasets are shown
in Tab. E, Tab. F, and Tab. G, respectively.

C.3. Backbones

In this work, we adopt two models to serve as the back-
bone of our proposed M3Net, i.e., the classical MinkUNet
[5] and the more recent PTv2+ [29].

C.3.1 MinkUNet

The primary contribution of MinkUNet [5] is the intro-
duction of a neural network architecture capable of pro-
cessing 4D spatiotemporal data (3D space + time). This is
particularly relevant for applications that involve dynamic
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Table E. Text prompts defined for the nuScenes [9] dataset (16 classes) in our proposed M3Net framework.

nuScenes (16 classes)

# class text prompt

1 barrier ‘barrier’, ‘barricade’

2 bicycle ‘bicycle’

3 bus ‘bus’

4 car ‘car’

5 construction-vehicle ‘bulldozer’, ‘excavator’, ‘concrete mixer’, ‘crane’, ‘dump truck’

6 motorcycle ‘motorcycle’

7 pedestrian ‘pedestrian’, ‘person’

8 traffic-cone ‘traffic-cone’

9 trailer ‘trailer’, ‘semi-trailer’, ‘cargo container’, ‘shipping container’, ‘freight container’

10 truck ‘truck’

11 driveable-surface ‘road’

12 other-flat ‘curb’, ‘traffic island’, ‘traffic median’

13 sidewalk ‘sidewalk’

14 terrain ‘grass’, ‘grassland’, ‘lawn’, ‘meadow’, ‘turf’, ‘sod’

15 manmade ‘building’, ‘wall’, ‘pole’, ‘awning’

16 vegetation ‘tree’, ‘trunk’, ‘tree trunk’, ‘bush’, ‘shrub’, ‘plant’, ‘flower’, ‘woods’

environments, like autonomous driving, where understand-
ing the temporal evolution of the scene is crucial. A key
feature of the Minkowski convolution, and by extension
MinkUNet, is its ability to perform convolutional operations
on sparse data. This is achieved through the use of a gener-
alized sparse convolution operation that can handle data in
high-dimensional spaces while maintaining computational
efficiency. The implementation of Minkowski convolutions
is facilitated by the Minkowski Engine, a framework for
high-dimensional sparse tensor operations. This engine en-
ables the efficient implementation of the MinkUNet and
other similar architectures. In this work, we resort to the
Pointcept [8] implementation of MinkUNet and adopt the
base version as our backbone network in M3Net. More
details of this used backbone can be found at https:
//github.com/Pointcept/Pointcept.

C.3.2 PTv2+

PTv2+ [29] introduces an effective grouped vector atten-
tion (GVA) mechanism. GVA facilitates efficient informa-
tion exchange both within and among attention groups, sig-
nificantly enhancing the model’s ability to process complex
point cloud data. PTv2+ also introduces an improved po-
sition encoding scheme. This enhancement allows for bet-
ter utilization of point cloud coordinates, thereby bolstering
the spatial reasoning capabilities of the model. The addi-

tional position encoding multiplier strengthens the position
information for attention, allowing for more accurate and
detailed data processing. Extensive experiments demon-
strate that PTv2+ achieves state-of-the-art performance on
several challenging 3D point cloud understanding bench-
marks. In this work, we resort to the Pointcept [8] im-
plementation of PTv2+ implementation of MinkUNet and
adopt the base version as our backbone network in M3Net.
More details of this used backbone can be found at https:
//github.com/Pointcept/Pointcept.

C.4. Training Configuration

In this work, we implement the proposed M3Net frame-
work based on Pointcept [8] and MMDetection3D [7]. We
trained our baselines and M3Net on four A100 GPUs each
with 80 GB memory. We adopt the AdamW optimizer [23]
with a weight decay of 0.005 and a learning rate of 0.002.
The learning rate scheduler utilized is cosine decay and the
batch size is set to 6 for each GPU.

In the data-specific rasterization process, we rasterize
the point clouds with voxel sizes tailored to the dataset
characteristics. Specifically, we set the voxel sizes to
[0.05m, 0.05m, 0.05m], [0.1m, 0.1m, 0.1m], and [0.05m,
0.05m, 0.05m] for the SemanticKITTI [1], nuScenes [9],
and Waymo Open [28] datasets, respectively.

For data augmentation, we leverage several techniques,
including random flips along the X , Y , and XY axes, and
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Table F. Text prompts defined for the SemanticKITTI [1] dataset (19 classes) in our proposed M3Net framework.

SemanticKITTI (19 classes)

# class text prompt

1 car ‘car’

2 bicycle ‘bicycle’

3 motorcycle ‘motorcycle’

4 truck ‘truck’

5 other-vehicle ‘other vehicle’, ‘bulldozer’, ‘excavator’, ‘concrete mixer’, ‘crane’, ‘dump truck’, ‘bus’,
‘trailer’, ‘semi-trailer’, ‘cargo container’, ‘shipping container’, ‘freight container’

6 person ‘person’

7 bicyclist ‘bicyclist’

8 motorcyclist ‘motorcyclist’

9 road ‘road’

10 parking ‘parking’

11 sidewalk ‘sidewalk’

12 other-ground ‘other ground’, ‘curb’, ‘traffic island’, ‘traffic median’

13 building ‘building’

14 fence ‘fence’

15 vegetation ‘tree’

16 trunk ‘tree trunk’, ‘trunk’

17 terrain ‘grass’, ‘grassland’, ‘lawn’, ‘meadow’, ‘turf’, ‘sod’

18 pole ‘pole’

19 traffic sign ‘traffic sign’

random jittering within the range of [-0.02m, 0.02m]. Addi-
tionally, we incorporate global scaling and rotation, choos-
ing scaling factors and rotation angles randomly from the
intervals [0.9, 1.1] and [0, 2π], respectively. Furthermore,
we integrate Mix3D [24] into our augmentation strategy
during the training. There also exists some other augmen-
tation techniques, such as LaserMix [19], PolarMix [30],
RangeMix [16, 18], and FrustumMix [35].

For the network backbones, we have opted for
MinkUNet [5] and PTv2+ [29]. In the case of MinkUNet,
the encoder channels are set as {32, 64, 128, 256}, and the
decoder channels are {256, 128, 64, 64}, each with a kernel
size of 3. Meanwhile, for the PTv2+, the encoder chan-
nels are {32, 64, 128, 256, 512}, and the decoder channels
are {64, 64, 128, 256}. For additional details, kindly refer
to the original papers.

For the loss function, we incorporate the conventional
cross-entropy loss and the Lovasz-softmax [2] loss to pro-
vide optimization for the LiDAR semantic and panoptic
segmentation task. Additionally, we employ the L1 loss to
optimize the instance head, aiding in the regression of pre-
cise instance offsets.

C.5. Evaluation Configuration

In this work, we follow the conventional reporting
and employ the Intersection-over-Union (IoU) for individ-
ual classes and the mean Intersection-over-Union (mIoU)
across all classes as our evaluation metrics for LiDAR se-
mantic segmentation. Specifically, the IoU score for seman-
tic class c is computed as follows:

IoUc =
TPc

TPc + FPc + FNc
. (1)

Here, TPc, FPc, and FNc represent the true positive, false
positive, and false negative of class c, respectively. The
mIoU score on each dataset is calculated by averaging the
IoU scores across every semantic class. Notably, following
recent works [29, 36], we report mIoU with Test Time Aug-
mentation (TTA). For additional details, kindly refer to the
original papers.

For panoptic LiDAR segmentation, we follow conven-
tional reporting and utilize the Panoptic Quality (PQ) as our
primary metric. The definition and calculation of the Panop-
tic Quality (PQ), Segmentation Quality (SQ), and Recogni-
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Table G. Text prompts defined for the Waymo Open [28] dataset (22 classes) in our proposed M3Net framework.

Waymo Open (22 classes)

# class text prompt

1 car ‘car’

2 truck ‘truck’

3 bus ‘bus’

4 other-vehicle ‘other vehicle’, ‘pedicab’, ‘construction vehicle’, ‘recreational vehicle’, ‘limo’,
‘tram’, ‘trailer’, ‘semi-trailer’, ‘cargo container’, ‘shipping container’, ‘freight
container’, ‘bulldozer’, ‘excavator’, ‘concrete mixer’, ‘crane’, ‘dump truck’

5 motorcyclist ‘motorcyclist’

6 bicyclist ‘bicyclist’

7 pedestrian ‘person’, ‘pedestrian’

8 traffic-sign ‘traffic sign’, ‘parking sign’, ‘direction sign’, ‘traffic sign without pole’, ‘traffic
light box’

9 traffic-light ‘traffic light’

10 pole ‘lamp post’, ‘traffic sign pole’

11 construction-cone ‘construction cone’

12 bicycle ‘bicycle’

13 motorcycle ‘motorcycle’

14 building ‘building’

15 vegetation ‘bushes’, ‘tree branches’, ‘tall grasses’, ‘flowers’, ‘grass’, ‘grassland’, ‘lawn’,
‘meadow’, ‘turf’, ‘sod’

16 tree-trunk ‘tree trunk’, ‘trunk’

17 curb ‘curb’

18 road ‘road’

19 lane-marker ‘lane marker’

20 other-ground ‘other ground’, ‘bumps’, ‘cateyes’, ‘railtracks’

21 walkable ‘walkable’, ‘grassy hill’, ‘pedestrian walkway stairs’

22 sidewalk ‘sidewalk’

tion Quality (RQ) scores are given as follows:

PQ =

∑
(i,j)∈TP IoU(i, j)

|TP |︸ ︷︷ ︸
SQ

× |TP |
|TP |+ 1

2 |FP |+ 1
2 |FN |︸ ︷︷ ︸

RQ

.

(2)
The three aforementioned metrics are also calculated in-
dividually for things and stuff classes, resulting in PQth,
SQth, RQth, and PQst, SQst, RQst. Additionally, we also
report the PQ† score as widely used in many prior works
[11, 20, 27, 37]. This metric is defined by exchanging the
PQ of each stuff class with its IoU and then averaging across
all semantic classes. For additional details, kindly refer to
the original papers.

To further assess the capability of a LiDAR segmenta-
tion model for out-of-training-distribution generalization,

we follow Robo3D [17] and adopt the corruption error (CE)
and resilience rate (RR), as well as the mean corruption
error (mCE) and mean resilience rate (mRR) as the eval-
uation metrics in comparing the robustness. To normalize
the severity effects, we chose MinkUNet [5] as the baseline
model. The CE and mCE scores are calculated as follows:

CEk =

∑3
l=1(1− Acck,l)∑3

l=1(1− Accbaseline
k,l )

, mCE =
1

N

N∑
k=1

CEk ,

(3)
where Acck,l denotes mIoU scores on corruption type k at
severity level l. N = 8 is the total number of corruption
types. The mRR serves as the relative robustness indicator
for measuring how much accuracy a model can retain when
evaluated on the corruption sets. The RR and mRR scores

10
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(a) M3Net (w/ MinkUNet [5] backbone)
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(b) M3Net (w/ PTv2+ [29] backbone)

Figure A. A pilot study of naı̈vely merging different datasets for training the MinkUNet [5] model. Compared to the standalone training
in (a), either jointly training with (b) the same, (c) different, or (d) all sensor-acquired data will cause severe degradation. Subfigure (a):
M3Net w/ a MinkUNet [5] backbone. Subfigure (b): M3Net w/ a PTv2+ [29] backbone.

are calculated as follows:

RRk =

∑3
l=1 Acck,l

3× Accclean
, mRR =

1

N

N∑
k=1

RRk , (4)

where Accclean denotes the mIoU score on the clean valida-
tion set of each dataset. Kindly refer to the original paper
for additional details.

D. Additional Experimental Results
In this section, we present the complete experimental re-

sults as a supplement to the findings and conclusions drawn
in the main body of this paper.

D.1. Pilot Study

In the main body of this paper, we conduct a pilot study
to showcase the potential problems in the Single-Dataset
Training and Naı̈ve Joint Training pipelines. Specifically,
we observe that it is non-trivial to naı̈vely combine hetero-
geneous data from different driving datasets with large data
distribution and sensor configuration gaps to train a univer-
sal LiDAR segmentation model.

We show in Fig. A our pilot study with the MinkUNet [5]
backbone in subfigure (a) and the PTv2+ [29] backbone in
subfigure (b), for both standalone and joint training setups.
As can be seen, using either the classical MinkUNet or the
most recent PTv2+ as the backbone, the brutal combination
will undermine the segmentation performance. Due to large
discrepancies in aspects like sensor configurations, data ac-
quisitions, label mappings, and domain shifts, the jointly

trained representations tend to be disruptive instead of being
more general. Such degradation is particularly overt using
naı̈vely combining LiDAR data acquired by different sen-
sor setups, such as the direct merge of nuScenes [9] (Velo-
dyne HDL32E with 32 laser beams) and SemanticKITTI [1]
(Velodyne HDL-64E with 64 laser beams).

Meanwhile, we also supplement the complete compari-
son results among the Single-Dataset Training, Naı̈ve Joint
Training, and our proposed M3Net pipelines and show the
results in Fig. B. As can be seen, compared to the Single-
Dataset Training baselines, a naı̈ve merging of heteroge-
neous LiDAR data will cause severe performance degrada-
tion. This observation holds true for both the MinkUNet
[5] backbone as in Fig. Ba and the PTv2+ [29] backbone as
in Fig. Bb, which highlights again the importance of con-
ducting alignments when merging multiple driving datasets
for training. Notably, after proper data, feature, and label
space alignments, we are able to combine the advantage
of leveraging the diverse training data sources and achieve
better performance than the Single-Dataset Training base-
lines. Such improvements are holistic, as shown in the radar
charts, our proposed M3Net achieves superior performance
gains over the baselines under all the tested scenarios across
all twelve LiDAR segmentation datasets.

D.2. Ablation Study

In this section, we supplement more fine-grained abla-
tion analysis in the third column of Fig. C and Fig. D on the
SemanticKITTI [1], nuScenes [9], and Waymo Open [28]
datasets. The results verify the effectiveness of each of the
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(a) M3Net (w/ MinkUNet [5] backbone) (b) M3Net (w/ PTv2+ [29] backbone)

Figure B. Performance comparisons among M3Net [•], Single-Dataset Training [•], and Naı̈ve Joint Training [•] across twelve LiDAR
segmentation datasets. Subfigure (a): M3Net w/ a MinkUNet [5] backbone. Subfigure (b): M3Net w/ a PTv2+ [29] backbone. For better
comparisons, the radius is normalized based on M3Net’s scores. The larger the area coverage, the higher the overall performance.

three alignments proposed in M3Net.

D.3. LiDAR Panoptic Segmentation

In this section, we supplement the PQ, RQ, and SQ
scores, as well as their fine-grained scores regarding the
things and stuff classes for our panoptic LiDAR segmen-
tation experiments on the SemanticKITTI [1] and Panoptic-
nuScenes [9] datasets.

D.3.1 Panoptic-SemanticKITTI

For the detailed PQ, RQ, and SQ scores of our compara-
tive study on the SemanticKITTI [1] dataset, we supplement
Tab. H to facilitate detailed comparisons with state-of-the-
art LiDAR segmentation approaches on the validation set.
We observe that the proposed M3Net is capable of achiev-
ing new arts on the validation set, especially for the more
fine-grained metrics like RQ and SQ. The results verify the
effectiveness of the proposed M3Net compared to the singe-
dataset training and naı̈ve joint training baselines.

D.3.2 Panoptic-nuScenes

For the detailed PQ, RQ, and SQ scores of our compara-
tive study on the Panoptic-nuScenes [9] dataset, we supple-
ment Tab. H to facilitate detailed comparisons with state-
of-the-art LiDAR segmentation approaches on the valida-
tion set. We observe that the proposed M3Net is capable
of achieving new arts on the validation set, across almost

all the fine-grained metrics. The results verify the effective-
ness of the proposed M3Net compared to the singe-dataset
training and naı̈ve joint training baselines.

D.4. Out-of-Distribution Generalization

In this section, we supplement the class-wise CE and
RR scores of the out-of-training-distribution generaliza-
tion experiments on the SemanticKITTI-C and nuScenes-
C datasets in the Robo3D [17] benchmark. Specifically,
Tab. I and Tab. J show the per-corruption IoU scores of
prior works, our baselines, and the proposed M3Net on the
SemanticKITTI-C and nuScenes-C datasets, respectively.
We observe that M3Net sets up clear superiority over prior
arts across almost all eight corruption types. Such ro-
bust feature learning is crucial to the safe operation of au-
tonomous vehicles under out-of-training-distribution sce-
narios, especially in safety-critical areas [17, 33, 34].

E. Qualitative Assessment

In this section, we provide a comprehensive qualitative
assessment to validate further the effectiveness and superi-
ority of the proposed M3Net framework.

E.1. Visual Comparisons

We supplement several qualitative comparisons of our
proposed M3Net over the single-dataset training base-
line. Specifically, the visual comparisons across the Se-
manticKITTI [1], nuScenes [9], and Waymo Open [28]
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Figure C. Ablation study of the data, feature, and label space alignments in the proposed M3Net (w/ MinkUNet [5] backbone).
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Figure D. Ablation study of the data, feature, and label space alignments in the proposed M3Net (w/ PTv2+ [29] backbone).

datasets are shown in Fig. E, Fig. F, and Fig. G, respec-
tively. As we can see, the proposed M3Net shows superior
performance than the baseline under different driving sce-
narios. Such results highlight the effectiveness of the pro-

posed M3Net in enhancing performance in the multi-task,
multi-dataset, multi-modality training setting. Additionally,
we present qualitative results in Fig. H to showcase the ca-
pability of M3Net in tackling both the LiDAR semantic seg-
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mentation and panoptic segmentation tasks. As we can see,
the proposed M3Net demonstrates effectiveness in making
accurate predictions among the complex object and back-
ground classes in the driving scenes, underscoring its effec-
tiveness in handling multi-task LiDAR segmentation.

F. Broader Impact
In this section, we elaborate on the positive societal in-

fluence and potential limitations of our multi-task, multi-
dataset, multi-modality LiDAR segmentation framework.

F.1. Positive Societal Influence

In this work, we present a versatile LiDAR segmentation
framework dubbed M3Net for conducting multi-task, multi-
dataset, multi-modality LiDAR segmentation in a unifying
pipeline. LiDAR segmentation is crucial for the develop-
ment of safe and reliable autonomous vehicles. By accu-
rately interpreting the vehicle surroundings, LiDAR helps
in obstacle detection, pedestrian safety, and navigation,
thereby reducing the likelihood of accidents and enhancing
road safety. LiDAR segmentation contributes significantly
to societal welfare through its applications in various fields.
Its ability to provide accurate, detailed 3D representations
of physical environments enables more informed decision-
making, enhances safety, and promotes sustainability.

F.2. Potential Limitation

Although our proposed M3Net is capable of leveraging
multiple heterogeneous driving datasets to train a versatile
LiDAR segmentation network and achieve promising uni-
versal LiDAR segmentation results, there still exists room
for improvement. Firstly, our framework leverages cali-
brated and synchronized camera data to assist the align-
ments. Such a requirement might not be met in some older
LiDAR segmentation datasets. Secondly, we do not han-
dle the minority classes during multi-dataset learning, espe-
cially for some dynamic classes that are uniquely defined
by a certain dataset. Thirdly, we do not consider the com-
bination of simulation data with real-world LiDAR point
clouds. We believe these aspects are promising for fu-
ture work to further improve our multi-task, multi-dataset,
multi-modality LiDAR segmentation framework.

G. Public Resources Used
In this section, we acknowledge the use of datasets, mod-

els, and codebases, during the course of this work.

G.1. Public Datasets Used

We acknowledge the use of the following public datasets,
during the course of this work:
• nuScenes3 . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0

3https://www.nuscenes.org/nuscenes.

• nuScenes-devkit4 . . . . . . . . . . . . . . . . . Apache License 2.0
• SemanticKITTI5 . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• SemanticKITTI-API6 . . . . . . . . . . . . . . . . . . . MIT License
• Waymo Open Dataset7 . . . . . . . . Waymo Dataset License
• RELLIS-3D8 . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 3.0
• SemanticPOSS9 . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• SemanticSTF10 . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0
• SynLiDAR11 . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• DAPS-3D12 . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• Robo3D13 . . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0

G.2. Public Models Used

We acknowledge the use of the following public imple-
mentations, during the course of this work:
• MinkowskiEngine14 . . . . . . . . . . . . . . . . . . . . . MIT License
• PointTransformerV215 . . . . . . . . . . . . . . . . . . . . . Unknown
• spvnas16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• Cylinder3D17 . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• SLidR18 . . . . . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• OpenSeeD19 . . . . . . . . . . . . . . . . . . . . . Apache License 2.0
• segment-anything20 . . . . . . . . . . . . . . . Apache License 2.0
• Segment-Any-Point-Cloud21 . . . . . . . CC BY-NC-SA 4.0
• Mix3D22 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Unknown
• LaserMix23 . . . . . . . . . . . . . . . . . . . . . . . CC BY-NC-SA 4.0

G.3. Public Codebases Used

We acknowledge the use of the following public code-
bases, during the course of this work:
• mmdetection3d24 . . . . . . . . . . . . . . . . . Apache License 2.0
• Pointcept25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . MIT License
• OpenPCSeg26 . . . . . . . . . . . . . . . . . . . . Apache License 2.0

4https://github.com/nutonomy/nuscenes-devkit.
5http://semantic-kitti.org.
6https://github.com/PRBonn/semantic-kitti-api.
7https://waymo.com/open.
8http://www.unmannedlab.org/research/RELLIS-3D.
9http://www.poss.pku.edu.cn/semanticposs.html.

10https://github.com/xiaoaoran/SemanticSTF.
11https://github.com/xiaoaoran/SynLiDAR.
12https://github.com/subake/DAPS3D.
13https://github.com/ldkong1205/Robo3D.
14https://github.com/NVIDIA/MinkowskiEngine.
15https://github.com/Gofinge/PointTransformerV2.
16https://github.com/mit-han-lab/spvnas.
17https://github.com/xinge008/Cylinder3D.
18https://github.com/valeoai/SLidR.
19https://github.com/IDEA-Research/OpenSeeD.
20https://github.com/facebookresearch/segment-

anything.
21https://github.com/youquanl/Segment-Any-Point-

Cloud
22https://github.com/kumuji/mix3d.
23https://github.com/ldkong1205/LaserMix.
24https://github.com/open-mmlab/mmdetection3d.
25https://github.com/Pointcept/Pointcept.
26https://github.com/PJLab-ADG/OpenPCSeg.
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Table H. The class-wise panoptic segmentation scores on the val sets of the Panoptic-SemanticKITTI [1] and Panoptic-nuScenes [9]
datasets. All scores are given in percentage (%). For each evaluated metric: bold - best in column; underline - second best in column.

Method Panoptic-SemanticKITTI Panoptic-nuScenes
PQ PQ† RQ SQ mIoU PQ PQ† RQ SQ mIoU

Panoptic-TrackNet [13] 40.0 - 48.3 73.0 53.8 51.4 56.2 63.3 80.2 58.0
Panoptic-PolarNet [37] 59.1 64.1 70.2 78.3 64.5 63.4 67.2 75.3 83.9 66.9

EfficientLPS [27] 59.2 65.1 69.8 75.0 64.9 59.2 62.8 82.9 70.7 69.4
DSNet [11] 61.4 65.2 72.7 79.0 69.6 64.7 67.6 76.1 83.5 76.3

Panoptic-PHNet [20] 61.7 - - - 65.7 74.7 77.7 84.2 88.2 79.7

Naı̈ve Joint (MinkUNet) 47.8 54.1 56.9 71.6 54.0 45.0 50.3 55.3 79.4 59.8
Single-Dataset (MinkUNet) 60.7 65.6 70.6 83.2 64.4 58.4 62.7 82.9 69.3 73.3

M3Net (MinkUNet) 63.9 68.5 73.2 82.3 69.9 67.9 71.1 78.1 85.9 79.0

Naı̈ve Joint (PTv2+) 56.0 59.6 65.8 73.7 61.6 56.7 60.6 66.8 83.5 69.7
Single-Dataset (PTv2+) 59.5 63.6 69.5 75.3 65.1 67.0 69.8 77.8 85.0 78.1

M3Net (PTv2+) 63.9 68.7 73.1 82.4 72.0 71.7 74.0 82.2 86.5 80.9

Table I. The class-wise robustness evaluation scores on the SemanticKITTI-C dataset from the Robo3D benchmark [17]. All scores are
given in percentage (%). For each evaluated metric: bold - best in column; underline - second best in column.
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Naı̈ve Joint (MinkUNet) 113.7 84.7 48.5 54.0 39.8 41.1 49.1 39.8 47.7 46.1
Single-Dataset (MinkUNet) 95.1 85.0 50.6 52.3 51.4 54.5 59.3 56.9 56.2 56.6

M3Net (MinkUNet) 86.4 85.8 56.7 63.8 55.1 63.3 64.5 50.6 60.7 58.1

Naı̈ve Joint (PTv2+) 109.8 77.5 49.7 53.1 43.6 45.3 51.6 39.7 50.2 48.8
Single-Dataset (PTv2+) 92.7 85.9 52.3 53.7 51.8 55.8 60.2 56.4 59.3 57.6

M3Net (PTv2+) 83.3 84.0 60.4 66.1 52.7 63.9 65.1 55.1 62.6 57.9

Table J. The class-wise robustness evaluation scores on the nuScenes-C dataset from the Robo3D benchmark [17]. All scores are given
in percentage (%). For each evaluated metric: bold - best in column; underline - second best in column.
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PPKT [22] 105.6 76.1 64.0 72.2 59.1 57.2 63.9 36.3 60.6 39.6
SLidR [26] 106.1 76.0 65.4 72.3 56.0 56.1 62.9 41.9 61.2 38.9

Seal [21] 92.6 83.1 72.7 74.3 66.2 66.1 66.0 57.4 59.9 39.9

Naı̈ve Joint (MinkUNet) 129.0 81.5 54.0 57.3 50.9 57.5 47.3 42.3 49.4 30.9
Single-Dataset (MinkUNet) 99.6 79.1 60.7 74.6 50.8 65.0 67.1 32.4 63.2 50.0

M3Net (MinkUNet) 91.0 79.2 62.5 76.2 49.7 75.4 66.2 43.3 64.7 52.5

Naı̈ve Joint (PTv2+) 122.2 73.4 55.2 60.0 51.4 58.7 52.7 43.3 52.9 34.7
Single-Dataset (PTv2+) 89.6 79.1 63.1 76.4 51.6 75.2 67.9 41.4 65.4 53.5

M3Net (PTv2+) 85.9 78.2 54.4 78.0 51.2 76.8 68.0 44.3 66.7 55.9

15



Singe-Dataset TrainingGround-Truth M3Net (Ours)

Figure E. Qualitative comparisons between the Single-Dataset Training and the proposed M3Net for LiDAR semantic segmentation on
the SemanticKITTI dataset [1]. To highlight the differences, the correct / incorrect predictions are painted in gray / red, respectively.
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Singe-Dataset TrainingGround-Truth M3Net (Ours)

Figure F. Qualitative comparisons between the Single-Dataset Training and the proposed M3Net for LiDAR semantic segmentation on
the nuScenes dataset [9]. To highlight the differences, the correct / incorrect predictions are painted in gray / red, respectively.
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Singe-Dataset TrainingGround-Truth M3Net (Ours)

Figure G. Qualitative comparisons between the Single-Dataset Training and the proposed M3Net for LiDAR semantic segmentation on
the Waymo Open dataset [28]. To highlight the differences, the correct / incorrect predictions are painted in gray / red, respectively.
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M3Net (Semantic Segmentation)Ground-Truth M3Net (Panoptic Segmentation)

Figure H. Qualitative comparisons between the Ground-Truth and the proposed M3Net for LiDAR panoptic segmentation on the Se-
manticKITTI dataset [1]. To highlight the panoptic segmentation effect, the semantic predictions in the third column are painted in gray.
For panoptic segmentation predictions, each color-coded cluster represents a distinct instance.
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