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Supplementary Material

6. More on Algorithm Procedure

In addition to the details elaborated in the main paper,
we present the training procedure of our two-stage RAPL
framework that includes three main designs for UFG-NCD,
i.e., channel-wise region alignment (CRA), proxy-guided
supervised learning (PSL) and proxy-guided contrastive
learning (PCL). The detailed training procedure of the pre-
train phase and the discover phase is shown in Algorithms 1
and 2 respectively. Note that, we first pre-train the whole
network on labeled split with the objective in Eq. (11), and
then fine-tune the model on the combination of labeled and
unlabeled splits with the objective in Eq. (12). In order to
obtain more algorithmic details and reproduce the results
reported in Tabs. 1 and 2, please refer to the source code
included in the supplementary material.

Algorithm 1: Pre-train Phase of our RAPL
Input: Feature Extractor f , Projection Head (with

Global Average Pooling) h, Labeled split Dl,
Old proxies Pold.

Output: f , h, Pold.
1 Randomly initialize f , h, Pold;
2 for n = 1 in [1,max epoch pre− train] do
3 for i = 1 in [1,max iteration] do
4 Sample labeled mini-batches X l from Dl;
5 Extract feature maps Ql;
6 Group and assign region label for each

feature matrix z in Z ∈ Ql;
7 Calculate LCRA by Eq. (2);
8 Generate feature vector V l by

V l = h(flatten(Ql);
9 Construct similarity matrix S between V l

and Pold by Eq. (3);
10 Generate top-k negative mask M by Eq. (4);
11 Perform mask scale softmax by Eq. (6) on

the selected similarities by Eq. (5);
12 Calculate LPC by Eq. (7);
13 Construct similarity matrix Sp within Pold

by Eq. (8);
14 Calculate LREG by Eq. (9);
15 Calculate overall optimization objective

by Eq. (11);
16 Update f , h and Pold by SGD [23];
17 end
18 end

Algorithm 2: Discover Phase of our RAPL
Input: Feature Extractor f , Projection Head (with

Global Average Pooling) h, Labeled and
Unlabeled splits Dl,Du, Old and New
proxies Pold,Pnew.

Output: f , h, Pold and Pnew.
1 Initialize Pnew by k-means [18].
2 for n = 1 in [1,max epoch discover] do
3 for i = 1 in [1,max iteration] do
4 Sample labeled and unlabeled mini-batches

[X l, Xu] from Dl ∪Du;
5 Extract feature maps Q = [Ql, Qu];
6 Group and assign region label for each

feature matrix z in Z ∈ Q;
7 Calculate LCRA by Eq. (2);
8 Generate feature vector V = [V l, V u] by

V = h(flatten(Q);
9 Construct similarity matrix S between V l

and Pold by Eq. (3);
10 Generate top-k negative mask M by Eq. (4);
11 Perform mask scale softmax by Eq. (6) on

the selected similarities by Eq. (5);
12 Calculate LPC on by Eq. (7);
13 Calculate LPCL by Eq. (10);
14 Calculate overall optimization objective

by Eq. (12);
15 Update f , h and Pnew by SGD [23];
16 end
17 end

7. More on Experimental Deatils

7.1. Implementation Details on RAPL

To obtain more discriminative representation, we use a
stronger feature extractor and higher resolution images than
the general implementation of NCD. Specifically, we train
all methods using a ResNet-50 [11] backbone with Ima-
geNet [5] pre-trained weights on 448 × 448 resolution im-
ages. Furthermore, following [33], in the training process,
the input images are cropped with a random scale within
{0.67, 1.0} and then resized to 448 × 448. After that, we
perform random data augmentation to generate two views
of each image, which includes horizontal flip, vertical flip,
“ColorJitter”, “Grayscale” and “GaussianBlur”. While in
the inference process, images are simply resized to 512 ×
512 and center-cropped into 448 × 448. Due to the back-
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(c) LREG

Figure 7. We show the loss curves in the pre-train phase on five UFG-NCD datasets, where the x-axis indicates the training epochs and the
y-axis is the loss cost for each loss as Eqs. (2), (7) and (9)���������	
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(c) LPCL

Figure 8. We show the loss curves in the discover phase on five UFG-NCD datasets, where x-axis indicates the training epochs and y-axis
is the loss cost for each loss as Eqs. (2), (7) and (10)

bone and image resolution, we used in UFG-NCD, the fea-
ture map Z ∈ R2048×14×14, and feature vector v ∈ R2048.
Thus, we divide the feature maps into H ∗W = 196 groups
to encode the features of all regions. To make the feature di-
mensions consistent, i.e., D = 2048, the first 108 groups of
feature maps each have 10 feature maps and the remaining
groups each have 11 feature maps, denoted as:

Ẑi ∈

{
R10×14×14, if i < 108

R11×14×14, if i ≥ 108 and i < 196.
(13)

Following [25], we use a three-layer MLP projection
head to facilitate representation learning of PSL and PCL
in the embedding space, in which the input and output di-
mensions are both 2048, and the hidden dimension is set to
10240 for richer representation embedding.

Moreover, we illustrate the training loss curves on five
UFG-NCD datasets in the pre-train and the discover phase
of our RAPL in Figs. 7 and 8 respectively. Specifically, as
shown in Fig. 7, the decline of each training loss in Eq. (11)
is quite rapid in the early stage of the pre-train phase due
to full supervision. Then, the decrease of these loss grad-
ually slow down as training progress, and shows a stable
convergence trend eventually. On the other hand, LCRA

and LPCL show similar trendency in the discover phase.
However, the proxy-guided classification loss LPC shows a
trend of first increasing and then decreasing due to the rep-
resentation learning of the new incoming unlabeled data.

7.2. Implementation Details on Baselines

We adopt five representative methods from novel class dis-
covery (NCD) for our ultra-fine-grained novel class discov-
ery (UFG-NCD) task. RankStat IL [10] is widely used as
a competitive baseline for NCD, while recent methods in-
clude state-of-the-art approaches are implemented based on
UNO [7], e.g., ComEx [28], IIC [16] and rKD [8].

In our study, we apply these NCD methods to the UFG-
NCD task, leveraging their open-source code. We set the
batch size into 32 for these baselines, and we train UNO,
ComEX and IIC for 200 epochs in both training phases, and
train RankStat IL and rKD for 100 in the pre-train phase,
and 200/500 epochs in the discover phase respectively. We
fine-tuned the learning rates during each training phase to
establish an optimized performance. Specifically, we set
learning rates into {0.1, 0.01, 0.001} in the pre-train phase
and the discover phase respectively, and report the best per-
formance on these combinations of learning rates. We re-
port the optimal results of RankStat IL, UNO, ComEX and
IIC when lrpre−train = 0.01 and lrdiscover = 0.1. We
report the results of rKD when lrpre−train = 0.01 and
lrdiscover = 0.001.

7.3. Details on Datasets.

We choose five UFG-NCD datasets from [31] in our ex-
periments, namely SoyAgeing-{R1, R3, R4, R5, R6}. For
UFG-NCD, each class encompasses 5 images for both train-
ing and testing. Regarding GCD, there are 8 training im-



Component SoyAgeing-R1 SoyAgeing-R3 SoyAgeing-R4 SoyAgeing-R5 SoyAgeing-R6 Average

LPC LREG LCRA LPCL LV CL All Old New All Old New All Old New All Old New All Old New All Old New

(1) ✓ ✓ ✓ ✓ 56.36 74.14 38.59 54.34 74.75 33.94 56.46 74.14 38.79 55.86 72.53 39.19 48.28 62.63 33.94 54.26 71.64 36.89
(2) ✓ ✓ ✓ 56.97 75.56 38.38 58.99 78.79 39.19 56.46 72.73 40.20 55.96 72.32 39.60 47.98 60.81 35.15 55.27 72.04 38.50
(3) ✓ ✓ ✓ 58.48 76.97 40.00 57.37 76.16 38.59 58.69 74.34 43.03 57.78 74.75 40.81 52.12 66.87 37.37 56.89 73.82 39.96
(4) ✓ ✓ ✓ ✓ 58.99 79.19 38.79 58.99 78.59 39.39 57.07 71.92 42.22 61.01 74.75 47.27 50.20 64.65 35.76 57.25 73.82 40.69

Table 5. Ablation study on all UFG-NCD datasets. Each component of our method is removed in isolation, where LV CL indicates vanilla
contrastive learning without the guidance of proxies.

(𝑎𝑎) (𝑏𝑏) (𝑐𝑐) (𝑑𝑑) (𝑒𝑒) (𝑓𝑓) (𝑔𝑔) (ℎ)

R1

(a) Visualization on 8 cultivars from SoyAgeing-R1.

(𝑎𝑎) (𝑏𝑏) (𝑐𝑐) (𝑑𝑑) (𝑒𝑒) (𝑓𝑓) (𝑔𝑔) (ℎ)

R3

(b) Visualization on 8 cultivars from SoyAgeing-R3.

Figure 9. Visualization of top-15 groups of feature maps.

ages and 2 testing images per class, where unlabeled train-
ing data consists of 50% of the images from Cl, in addition
to all images from Cu, i.e., 1188 unlabeled training images
contain 396 images from Cl and 796 images from Cu. We
present the detailed statistics of the dataset in Tab. 6.

8. More Results and Analysis

8.1. More on Ablation Results

In addition to results on SoyAgeing-R1 (See in Tab. 3), we
present more ablation results on all UFG-NCD datasets by
individually removing each component of RAPL in Tab. 5.
Moreover, we report the average accuracy in terms of “All”,
“Old” and “New” in Tab. 5, and the results demonstrate the
effectiveness of each component of our RAPL.

8.2. Feature Maps with CRA

We provide the visualization of extracted feature maps in
the test process after training by our RAPL in Fig. 9,

Task Cu Cl Train Test

Nu N l Nu N l

UFG-NCD 99 99 495 495 495 495
GCD 99 99 1188 396 196 196

Table 6. Statistics of the dataset splits of SoyAgeing-{R1, R3, R4,
R5, R6} for UFG-NCD and GCD.

where each column contains two visualizations of images
from the same class. First, we extract feature maps Z ∈
R2048×14×14 with the model trained by our RAPL, and we
generate the region representation vr ∈ R196 with the max-
imum element after performing global max pooling on each
group of feature maps Zi, where each element vri is calcu-
lated by:

vri = MAX(GMP(Ẑi)). (14)

Since we perform CRA on the final feature maps, i.e.,



(𝑎𝑎) (𝑏𝑏) (𝑐𝑐) (𝑑𝑑) (𝑒𝑒) (𝑓𝑓) (𝑔𝑔) (ℎ)

R4

(a) Visualization on 8 cultivars from SoyAgeing-R4.

(𝑎𝑎) (𝑏𝑏) (𝑐𝑐) (𝑑𝑑) (𝑒𝑒) (𝑓𝑓) (𝑔𝑔) (ℎ)

R5

(b) Visualization on 8 cultivars from SoyAgeing-R5.

(𝑎𝑎) (𝑏𝑏) (𝑐𝑐) (𝑑𝑑) (𝑒𝑒) (𝑓𝑓) (𝑔𝑔) (ℎ)

R6

(c) Visualization on 8 cultivars from SoyAgeing-R6.

Figure 10. Visualization of top-15 groups of feature maps.

Method Cotton80 SoyGene CUB-200-2011 Stanford Cars
All Old New All Old New All Old New All Old New

UNO [7] 28.25 17.50 39.00 28.68 44.21 13.15 43.79 68.30 19.27 51.81 81.17 22.45
IIC [16] 32.19 30.00 34.38 30.16 51.60 8.91 41.57 65.05 18.09 52.87 84.35 21.38

RAPL 42.92 46.67 39.17 40.93 64.65 17.41 56.42 81.11 32.29 64.41 85.61 43.40

Table 7. Compared result of Cotton80, SoyGene and CUB.

z ∈ R14×14, then each dimension of the feature map z rep-
resents a 32 × 32 sized region of the input image. How-
ever, as shown in Fig. 9, UFG images have white edges on
both sides, which will lead to exactly the same features in
these regions. Thus we set the region representation of these
blank regions to 0, and the improved representation is de-
noted as vri Then, we visualize feature maps Z from the top

15 significant groups of feature maps excluding those blank
regions, i.e.

Z = {zj ∈ Ẑi} s.t., i ∈ {i | vri ∈ top-k(vri )}, (15)

where k = 15. As shown in Figs. 9 and 10, we can ob-
serve that the petiole and leaf tip are highlighted in most
images. This is because these two parts contain rich tex-



Method R1 R3 R4 R5 R6 AVG

MaskCOV [30] 79.80 74.65 79.60 78.28 66.97 75.86
SPARE [32] 78.28 79.90 78.69 77.27 64.44 75.72

RAPL 80.10 79.70 78.18 76.16 66.57 76.14

Table 8. Supervised classification for SoyAgeing series.

Splits SoyAgeing-R1

Cl Cu All Old New

33 165 40.61 61.21 36.48
66 132 50.71 66.36 42.88
99 99 58.99 79.19 38.79

132 66 59.90 72.27 35.15
165 33 64.34 69.82 36.97

Table 9. Illustrating the trend of performance on SoyAgeing-R1,
when varying the numbers of labeled and unlabeled classes.

ture information on leaf veins and shapes. Additionally,
many highlighted areas are distributed around the main leaf
veins, which indicates that our model automatically focuses
on vein parts that are rich in texture information. Note that,
with the constraints of our RAPL, the dominant features of
instances that from the same class are distributed in similar
regions of the images.

Overall, the success of CRA can be summarized as fol-
lows: firstly, CRA aligns the feature channels in the same
group into the assigned region. Then, RAPL compares dif-
ferent samples and proxies channel-wise, where the dis-
criminative region features are preserved by the weights
of aligned feature channels. Since CRA learns different
weights of channels in the group within the assigned region
for different classes, thanks to the consistent region-channel
alignment, these channels focus on the same region for both
labeled and unlabeled classes. Thus, the knowledge learned
from labeled classes can be easily shared and transferred to
discover novel classes of unlabeled samples.

8.3. More on Other Datasets

The results in the Tab. 7 show that our RAPL consistently
outperforms NCD methods by a large margin on other
Ultra-FGVC (Cotton80 and SoyGene) and FGVC (CUB
and S-Cars) datasets. We follow the same details to imple-
ment RAPL, UNO and IIC. Note that, for a fair comparison
with RAPL on all the datasets, we reproduce UNO and IIC
with ResNet-50 rather than ViT-B/16.

8.4. More on Supervised Learning

As the Ultra-FGVC methods without the specific design for
discovering new categories are not compatible with NCD,
for a fair comparison, we adapt our RAPL into the con-
ventional Ultra-FGVC image classification setting instead

of UFG-NCD. In this case, all the samples are completely
labeled, and we use them to train RAPL via the pre-train
phase only. The results in the Tab. 8 show that our RAPL is
able to achieve competitive performance with state-of-the-
art Ultra-FGVC methods as well.

8.5. More on Different Split Protocols

To explore the effects of RAPL under strict annotation limi-
tation, we train the network on varying splits of SoyAgeing-
R1. The results in Tab. 9 indicate that RAPL has strong ro-
bustness on unlabeled data despite the percentage of labeled
classes.


