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1. Details of Evaluation Metrics

User Study: Our user study involved 53 participants, each
of whom was tasked with comparing 75 pairs of results: 30
text-to-3D and 45 image-to-3D conversions. As illustrated
in Figure 1, we presented each participant with pairs of re-
sults generated by two undisclosed distinct methods, along-
side their corresponding input text or image. Participants
were able to rotate and zoom in/out the 3D shapes to assess
them from various viewpoints, subsequently choosing the
one they deemed superior in quality and alignment with the
input image or text. For each text-to-3D pair, an input text
prompt was randomly selected from a set of 50 DreamFu-
sion [15] prompts, and two different methods were applied
randomly. Similarly, for each image-to-3D pair, an input
image depicting a 3D shape was randomly selected from
a pool of 1,030 GSO [5] shapes, with two different meth-
ods applied randomly. In total, 3,975 evaluated pairs were
collected. We then calculated the preference rate for each
method, both individually and in combination.
Other Metrics: For F-Score, we utilize a threshold of 0.05,
with shapes normalized within a 0-1 range. For CLIP-
Simlarity, we utilize CLIP ViT-L/14@336px. Since the pre-
dicted mesh may not have the same scale and pose as the
ground-truth mesh, to ensure a fair comparison, we employ
the following process to align the predicted mesh with the
ground-truth mesh. First, we align the up direction for the
results generated by each approach. Next, for each gener-
ated mesh, we perform a linear search over scales and ro-
tation angles along the up direction. After applying each
pair of scale and z-rotation, we utilize the Iterative Clos-
est Point (ICP) algorithm to align the transformed mesh to
the ground-truth mesh. Finally, we select the mesh with

the largest number of inliers as the final alignment. This
alignment process helps us establish a consistent reference
frame for evaluating the predicted meshes across different
approaches.

2. Details of Consistent Multi-View Generation

2.1. Consistency and Stability: Noise Schedule

The original noise schedule for Stable Diffusion, i.e., the
scaled-linear schedule, places emphasis on local details
but has very few steps with a lower Signal-to-Noise Ratio
(SNR), as shown in Fig. 2. These low SNR steps occur
in the early denoising stage, which is crucial for determin-
ing the global low-frequency structure of the content. A
reduced number of steps in this stage, either during training
or inference, can lead to greater structural variation. While
this setup is suitable for single-image generation, we have
observed that it limits the model’s ability to ensure global
consistency between multiple views.

To empirically verify this, we perform a toy task by
finetuning a LoRA [7] model on the Stable Diffusion 2
v-prediction model to overfit a blank white image given
the prompt a police car. The results are presented in
Fig. 3. Surprisingly, with the scaled-linear noise schedule,
the LoRA model cannot overfit on this simple task; it only
slightly whitened the image. In contrast, with the linear
noise schedule, the LoRA model successfully generates a
blank white image regardless of the prompt. While finetun-
ing the full model may still be viable for the scaled-linear
schedule, this example highlights the significant impact of
the noise schedule on the model’s ability to adapt to new
global requirements.

As pointed out by Chen [2], high-resolution images ap-
pear less noisy compared to low-resolution images when
subjected to the same absolute level of independent noise
(see Fig. 2 in [2]). This phenomenon occurs because
“higher resolution natural images tend to exhibit a higher
degree of redundancy in (nearby) pixels, therefore less in-
formation is destroyed with the same level of independent
noise.” Consequently, we can interpret the use of lower res-
olution in Zero-1-to-3 training as a modification of the noise
schedule, placing greater emphasis on the global require-
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Figure 1. A screenshot of our user study website is shown, where users can rotate and zoom in on the 3D models, then select the model
that exhibits superior quality and better aligns with the input image or text.

(a) (b)

Figure 2. Comparison between the linear schedule and Stable Dif-
fusion’s scaled linear schedule.

Before Finetuning 10k Iters, Scaled Linear 1k Iters, Linear

× √

Figure 3. Importance of the noise schedule. Noise schedule
strongly affects the model’s capability to adapt to new global re-
quirements (generating a pure white image from the prompt a po-
lice car in this case). Notably, both schedules produce highly simi-
lar images before fine-tuning; therefore, we present only the result
of the v model before fine-tuning.

ments of 3D-consistent multi-view generation. This also
explains the instability issue of training Zero-1-to-3 with
higher resolution [10].

In summary, we find it necessary to switch from the
scaled-linear schedule to the linear schedule for noise in
our model. However, this shift introduces another potential

Figure 4. Swapping the noise schedule. We swap the sched-
ule of Stable Diffusion 2 v (Left) and ϵ-parameterized (Right)
models from scaled-linear to linear at inference time without any
finetuning. Prompt: a blue clock with black numbers. The ϵ-
parameterized model exhibits a significant decrease in quality,
while the v model produces a high-quality image with the linear
noise schedule.

challenge: adapting the pretrained model to the new sched-
ule. Fortunately, we have observed that the v-prediction
model is quite robust when it comes to swapping the sched-
ule, in contrast to the x0- and ϵ-parameterizations, as illus-
trated in Figure 4. It is also theoretically supported that
the v-prediction is inherently more stable [17]. Therefore,
we have opted to utilize the Stable Diffusion 2 v-prediction
model as our base model for fine-tuning.

2.2. Local Condition: Scaled Reference Attention

In Zero-1-to-3, the conditioning image (single view input) is
concatenated in the feature dimension with the noisy inputs
to be denoised for local image conditioning. This imposes
an incorrect pixel-wise spatial correspondence between the
input and the target image.
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Figure 5. Reference Attention. It adds an additional conditioning
branch and modifies key (K) and value (V) matrices of the self-
attention layers to accept the extra condition image, which can
fully reuse Stable Diffusion priors.
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Figure 6. Comparison on local conditioning. We train the model
with different levels of scaled reference attention on the ShapeNet
Cars dataset. Output coherence with the input image is best on 5x
scaled reference attention.

We propose to use a scaled version of Reference Atten-
tion to provide proper local conditioning input.

As shown in Fig. 5, Reference Attention [20] refers to
the operation of running the denoising UNet model on an
extra reference image and appending the self-attention key
and value matrices from the reference image to the corre-
sponding attention layers when denoising the model input.
The same level of Gaussian noise as the denoising input is
added to the reference image to allow the UNet to attend to
relevant features for denoising at the current noise level.

Without any finetuning, Reference Attention is already
capable of guiding the diffusion model to generate images
that share similar semantic content and texture with the ref-
erence image. When finetuned, we observed that the Refer-
ence Attention works better when we scale the latent (before
adding noise). In Figure 6, we provide a comparison from
experiments conducted on ShapeNet Cars [1] to demon-
strate that the model achieves the highest consistency with
the conditioning image when the reference latent is scaled
by a factor of 5.

2.3. Global Condition: FlexDiffuse

In the original Stable Diffusion, global conditioning comes
solely from text embeddings. Stable Diffusion employs

Input

w/ Global

w/o Global

Figure 7. Ablation on global conditioning. In regions of the
image that are not visible in the input, the results are significantly
worse without global conditioning.

CLIP [16] as the text encoder and performs cross-attention
between model latents and per-token CLIP text embed-
dings. As a result, we can make use of the alignment be-
tween CLIP image and text spaces to reuse the prior for
global image conditioning.

We propose a trainable variant of the linear guidance
mechanism introduced in FlexDiffuse [18] to incorporate
global image conditioning into the model while minimizing
the extent of fine-tuning. We start from the original prompt
embeddings T of shape L × D where L is the length of
tokens and D is the dimension of token embeddings, and
add the CLIP global image embedding I of shape D mul-
tiplied by a trainable set of global weights {wi}i=1,...,L (a
shared set of weights for all tokens) to the original prompt
embeddings, or formally,

T ′
i = Ti + wi · I, i = 1, 2, . . . , L. (1)

We initialize the weights with FlexDiffuse’s linear guid-
ance:

wi =
i

L
. (2)

Since we do not impose any text conditions, so T is ob-
tained by encoding an empty prompt. We present the results
of trained models with and without global conditioning in
Figure 7. In the absence of the proposed global condition-
ing, the quality of generated content remains satisfactory for
visible regions corresponding to the input image. However,
the generation quality significantly deteriorates for unseen
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Figure 8. Multi-view prediction by different approaches.

Figure 9. Ablation study of texture refinement: In each pair, the left image displays the result before texture refinement, while the right
image shows the result after refinement.
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regions, as the model lacks the ability to infer the global
semantics of the object.

2.4. Putting Everything Together

Starting from the Stable Diffusion 2 v-model, we train our
model using all the techniques mentioned above. We train
the model on Objaverse [4] data rendered with random
HDRI environment lighting.

We adopt the phased training schedule from the Stable
Diffusion Image Variations model [9] to further reduce the
extent of finetuning and preserve as much prior in Stable
Diffusion as possible. In the first phase, we only tune the
self-attention layers and the KV matrices of cross-attention
layers of Stable Diffusion. We use the AdamW[8, 14] op-
timizer with cosine annealing learning rate schedule peak-
ing at 7 × 10−5 and 1000 warm-up steps. In the second
phase, we employ a very conservative constant learning rate
of 5× 10−6 and 2000 warm-up steps to tune the full UNet.
We employ the Min-SNR weighting strategy [6] to make
the training process more efficient.

3. Details of 3D Diffusion

In the initial stage, the occupancy UNet is structured with
five levels: 643, 323, 163, 83, and 43. These correspond
to 32, 64, 128, 512, and 1024 channels, respectively. The
global CLIP feature of the reference image is compressed
using an MLP. These compressed features are then concate-
nated with the multi-view features and the original UNet
features. For training, we utilize a batch size of 256 and a
learning rate of 5e-4.

In the second stage, the UNet also has five levels,
but with different resolutions: 1283, 643, 323, 163, and
83, maintaining the same channel configuration as in the
first stage. We utilize TorchSparse [19] as the backbone
of our 3D sparse convolution. Drawing inspiration from
SparseNeuS [12], we enhance each 3D voxel feature by
concatenating the 2D features and RGB colors from the pro-
jected 2D pixels across all six views with the voxel’s feature
in the final attention layer, which is designed to improve
the accuracy of color prediction for each voxel. Instead of
directly predicting the color of each voxel, here the UNet
is tasked with predicting a set of linear weights for each
voxel. These weights are subsequently employed to interpo-
late the colors of the 2D projected pixels. The UNet model
is trained with a batch size of 120 and a learning rate of 1e-
4. For constructing the ground truth color volume, we start
by unprojecting the multi-view images into a 3D space, re-
sulting in a colored point cloud. Each voxel’s ground truth
color is then determined by interpolating the colors of its
nearest neighbors in the fused point cloud.

4. Qualitative Comparison of Multi-View Gen-
eration Methods

In Figure 8, we present a qualitative comparison of various
multi-view image generation approaches. Techniques like
Zero123 [10] and Zero123-XL [3], which do not model the
joint distribution of multi-view images, struggle with main-
taining 3D consistency across the generated images. This
is evident in the inconsistencies observed in the cat tails
and the chair. Furthermore, Zero123 [10] tends to produce
darker images in certain views, likely due to biases in its
training dataset (as seen in the car example). In contrast,
concurrent methods such as SyncDreamer [11] and Won-
der3D [13] demonstrate improved 3D consistency. How-
ever, they sometimes miss capturing fine-grained details or
struggle with complex image scenarios. Our approach ex-
cels in generating multi-view images that are not only con-
sistent in 3D but also remarkably adept at preserving the
intricate details of the input image.

5. Qualitative Examples of Texture Refinement
In Figure 9, we present comparative results showcasing the
effect of texture refinement. Although the texture quality
of the outcomes produced by the 3D diffusion model can
be constrained by the volume resolution, it is possible to
further augment the texture quality through a lightweight
optimization process. This enhancement leverages the gen-
erated 3D consistent multi-view images as supervision.
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