
Supplementary material for “Point2CAD: Reverse Engineering CAD Models
from 3D Point Clouds”

Yujia Liu
ETH Zürich

Anton Obukhov
ETH Zürich

Jan Dirk Wegner
University of Zürich

Konrad Schindler
ETH Zürich

A1. Notation
Throughout the paper, we use several terms and concepts
as follows. A CAD model represents a complex object in
a format that permits editing in CAD software. Boundary
representation (B-REP) is one such representation; it in-
volves analytic surfaces, edges, and corners1, and explicit
topological relationships between them. Typically, such re-
lationships take the form of “an edge is an intersection of
two surfaces” and “a corner is an intersection of two edges”,
stated as adjacency matrices. The manifolds of surfaces and
edges have intrinsic dimensionality of 2 and 1 respectively.
Point cloud refers to the unordered set of 3D points, ob-
tained by scanning the surface of a real world object or
by sampling a CAD model for simulation purposes. Se-
mantic classes are the geometric types that we consider for
representing CAD model surfaces. These typically include
a plane, sphere, cylinder, cone, and freeform (spline) sur-
faces. Segmentation refers to assigning a semantic class to
each point of the point cloud. Clusters are sets of points be-
longing to the same semantic class and instance; they group
points belonging to distinct surfaces. Clustering informa-
tion can be a byproduct of segmentation, an algorithmic
stage, or given as ground truth. Primitives are inherently
low-dimensional parametric models representing analytical
shapes of semantic classes, and that can be used to fit clus-
ters with least squares.

A2. Primitive parameterization and fitting
Our method can handle several primitive types, including
planes, spheres, cylinders, and cones [1, 2].

Plane In the context of 3D geometry, a plane can be rep-
resented by a vector n ∈ R3, which is the unit normal to
the plane, and a scalar d that determines the distance of the
plane from the origin. Mathematically, a plane can be de-
noted by a tuple (n, d), where n satisfies |n| = 1. Any point

1Related terms in literature: “surfaces” := “faces”, “patches”; “edges”
:= “curves”, “contours”; “corners” := “points”, “vertices”, “endpoints”.

p ∈ R3 lies on the plane if and only if nTp = d.
The following steps can be employed to perform plane

fitting to a collection of 3D points:
1. Calculate the centroid of the points: c = 1

n

∑n
i=1 pi;

2. Compute the matrix: M = 1
n

∑n
i=1(pi − c)(pi − c)T ;

3. Calculate the eigenvalues and eigenvectors of M. Select
the eigenvector corresponding to the smallest eigenvalue
as the normal vector n. Compute the distance d using
the normal vector n and the centroid c: d = nT c.

Sphere A sphere can be represented by a tuple (c, r),
where c ∈ R3 denotes the center of the sphere and r ∈ R
denotes its radius. Any point p ∈ R3 lies on the sphere if
and only if ||p−c|| = r. The error function to be minimized
is as follows:

E (c, r) =

M∑
i=1

(∥pi − c∥ − r)
2
. (1)

Solving ∂E
∂r = 0 for r yields

r =
1

M

M∑
i=1

∥pi − c∥. (2)

Solving ∂E
∂c = 0 for c gives

c =
1

M

M∑
i=1

pi + r · 1

M

M∑
i=1

∂(∥pi − c∥)
∂c

. (3)

A fixed point iteration can solve the equations and subse-
quently determine the parameters (c, r).

Cylinder An infinite cylinder (a, c, r) is characterized by
a point c, a unit-length direction vector a that defines its
axis and a radius r. Any point p ∈ R3 lies on the cylinder
if and only if (p− c)

T (
I− aaT

)
(p− c) = r The error

function to be minimized is

E (a, c, r)=

M∑
i=1

(
(pi−c)

T(
I−aaT

)
(pi−c)− r2

)2
,

(4)

1

where I is the identity matrix. Solving ∂E
∂r2 = 0 leads to

r =

(
1

M

M∑
i=1

(c− pi)
T (I− aaT)(c− pi)

) 1
2

. (5)

By solving ∂E
∂c = 0, we can obtain an equation for c:

c =
Ã−1A

tr(ÂA)

(
1

M

M∑
i=1

(
pT
i Ãpi

)
pi

)
, (6)

where

A = Ã

(
1

M

M∑
i=1

pip
T
i

)
Ã, (7)

and Â = SAST , Ã = I − aaT , S is the skew symmet-
ric matrix of a. Putting them back into the error function
yields:

G (a) =
1

M

M∑
i=1

[
pT
i Ãpi −

1

M

M∑
j=1

pT
j Ãpj −

− 2pT
i Â

Tr
(
ÂA

)
 1

M

M∑
j=1

(
pT
j Ãpj

)
pj

]2. (8)

A Powell optimizer [3] is then employed to locate the global
minimum of the function G(a). Once a has been deter-
mined, the center c and radius r of the corresponding circle
can be easily obtained through Eq. 5 and 6.

Cone We parameterize an infinite cone using the set of
parameters (v,a, θ), where v ∈ R3 denotes the apex
point, a ∈ R3 denotes a unit axis direction vector, and
θ ∈ (0, π/2) represents half the angle of the cone. Any
point p that lies on it satisfies a · p−v

||p−v|| = cos(θ), which
can be written in a quadratic form as (p− v)T (cos(θ)2I−
aaT)(p − v) = 0. Thus, the error function can be defined
as follows:

E(v,a,θ)=

M∑
i=1

(
(pi−v)

T
(
cos (θ)

2
I−aaT

)
(pi−v)

)2
. (9)

This least-square problem can be solved efficiently with the
Levenberg-Marquardt [4] method.

A3. Algorithm of topological reconstruction
We present a pseudocode-based methodology for recon-
structing topological structures derived from M surfaces
fitted with potentially infinite primitives, forming a set
{S0

k}M . We denote the stage of surface processing with
superscript. We trim each primitive to form a margin of

Algorithm 1 Point2CAD model reconstruction

Input: M surfaces {S0
k}M obtained from fitting prim-

itives to point clusters {Pk}M
Output: a CAD model with M surfaces {S2

k}M , K
edges {E2

k}K and L corners {Ck}L
1: for i ∈ 1..M do
2: Trim S0

i by ϵ to input points: S1
i = Trim(S0

i |Pi, ϵ)
3: end for
4: for i ∈ 1..M do
5: get edges on S1

i : {E1
i,r}Ri

= {S1
j}j ̸=i ∩ S1

i

6: trim S1
i by edges: S2

i = Trim(S1
i |{E1

i,r}Ri
)

7: end for
8: for each pair (Ep,Eq) in intersection edges do
9: obtain the corners Cpq = Ep ∩Eq

10: end for
11: for i ∈ 1..L do
12: if any Cs ∈ Ei then
13: trim it by the corners: E2

i = Trim(E1
i |Cs)

14: end if
15: end for

width ϵ around the input points, then employ tessellation
and triangulation meshing algorithm. As a result, we ob-
tain a set of finite extended surfaces denoted as {S1

k}M . We
generate poly-line edges {E1

k}K by identifying intersect-
ing surfaces and computing pairwise intersections. And we
trim the surfaces by the edges, thus obtaining {S2

k}M . Sim-
ilarly, we intersect adjacent poly-line edges to obtain corner
points {Ck}L, subsequently trimming edges accordingly to
get final edges {E2

k}K . See Alg. 1.
Two distinct cases exist of using the Trim operation on

surfaces. In the first case, trimming is performed based on
a distance threshold, retaining only the portion of the in-
finite primitives near the input points. In the second case,
we trim the surfaces by considering the intersection of their
triangle-mesh representations with edges. We employ con-
nected component analysis, whereby a pair of faces is con-
sidered connected if a path exists between them that does
not cross an edge obtained through the surface intersection.
We then discard whole connected components based on the
distance of their members to the original point cloud. The
Trim operation on edges involves a similar subdivision of
the edge into connected segments by corners and retaining
segments close to the input points.

A4. Results on incomplete data

While Point2CAD can operate on top of a generative
pipeline, where missing parts of point clouds are recon-
structed with the help of a learned prior, ParSeNet and other
considered networks have limited ability to work with miss-
ing parts of the input. We show examples for incomplete

Figure 1. Reconstruction of incomplete point clouds.

point clouds processed by Point2CAD with ParSeNet in
Fig. 1.

A5. Results on Real-world 3D scanned data
We show an example for the real scan of a section of railway
track reconstructed with our method in Fig. 2. The piece
was scanned using a GOM ATOS Core 300, a structured
light scanner designed for actual industrial applications.

Figure 2. Reconstruction of a real object.

A6. Additional qualitative examples
We show more qualitative examples in Fig. 3, 4, 5, from
left to right: (a) input point cloud, (b) ground truth mesh,
(c) reconstruction with ComplexGen, (d) Point2CAD with
HPNet, (e) Point2CAD with ParSeNet, (f) Point2CAD with
GT segmentation.

References
[1] David Eberly. Geometric tools, 2006. 1
[2] Lingxiao Li, Minhyuk Sung, Anastasia Dubrovina, Li Yi, and

Leonidas J Guibas. Supervised fitting of geometric primitives
to 3d point clouds. In CVPR, 2019. 1

[3] Michael JD Powell. An efficient method for finding the min-
imum of a function of several variables without calculating
derivatives. The computer journal, 7(2):155–162, 1964. 2

[4] Ananth Ranganathan. The levenberg-marquardt algorithm.
Tutoral on LM algorithm, 11(1):101–110, 2004. 2

Figure 3. More visualisation results. From left to right: (a) input point cloud, (b) ground truth mesh, (c) reconstruction with ComplexGen,
(d) Point2CAD with HP-Net, (e) Point2CAD with ParSeNet, (f) Point2CAD with GT segmentation.

Figure 4. More visualisation results. From left to right: (a) input point cloud, (b) ground truth mesh, (c) reconstruction with ComplexGen,
(d) Point2CAD with HP-Net, (e) Point2CAD with ParSeNet, (f) Point2CAD with GT segmentation.

Figure 5. More visualisation results. From left to right: (a) input point cloud, (b) ground truth mesh, (c) reconstruction with ComplexGen,
(d) Point2CAD with HP-Net, (e) Point2CAD with ParSeNet, (f) Point2CAD with GT segmentation.

	. Notation
	. Primitive parameterization and fitting
	. Algorithm of topological reconstruction
	. Results on incomplete data
	. Results on Real-world 3D scanned data
	. Additional qualitative examples

