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A. Experiment Details
A.1 Tasks for Quantitative Evaluation

We design two evaluation protocols for sub-tasks in Section
4. The first protocol is task with known constraints, which
means the added constraints are sampled from existing hu-
man motion datasets, i.e., HumanML3D test set [4] in our
experiments. In this way, in addition to non-semantic mo-
tion quality metrics and constraint errors, we can evaluate
on semantic-related motion quality as well since we have
groundtruth motions. The second protocol is task with un-
seen constraints, which means the added constraints do not
come from existing motions and are designed by ourselves
to evaluate the generation capability on real open-set motion
control tasks. We experiment on one sub-task for known
constraints in Table 1 in the main text, and four sub-tasks
for unseen constraints in Table 2 in the main text.
Task with known constraints. For Task HSI-1 head height
constraint in Table 1, we constrain the head height for three
specified key-frames, i.e., first, middle and last frames to
be equal to that in the motions sampled from HumanML3D
test set. The text prompt and motion length for generation
are also obtained from that motion sample. The constraint
error for evaluation is the mean absolute error (MAE) av-
eraged over the three key-frames. We follow PriorMDM
[12] for evaluating metrics including FID, R-precision and
Diversity, and follow GMD [5] for evaluating Foot skating
ratio. The quantitative evaluation is conducted on 544 gen-
erated samples.
Task with unseen constraints. In Table 2, for Task HSI-2
avoiding overhead barrier, we constrain the head height to
be lower than 0.5 m for the middle frame and higher than
1.5 m for the first and last frames to ensure normal standing
poses at the beginning and the end. We also constrain the
heights for both feet to be close to the ground. Note that
this is a challenging task due to the low head height, and the
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combined constraints prevent trivial generations like step-
ping on stairs or always lying on the ground. The constraint
error for evaluation is defined as MAE for the head height
and foot heights.

For Task HSI-3 walking inside a square, we constrain
the walkable area to be a square −1 < x < 1,−1 < z < 1.
The constraint error for evaluation is defined as the per-joint
MAE averaged over x- and z-axis and all frames.
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where D includes x-axis and z-axis and Nj is the number
of joints.

For Task GEO-1 hand touching wall, we constrain the
left hand (joint 20) always on a vertical plane. The plane is
randomly sampled with its distance to the origin no greater
than 3. The constraint error for evaluation is defined as the
mean distance between the controlled hand and the given
plane averaged over all frames.

For Task HOI-1 moving object, we constrain on the
global positions of the left hand (joint 20) at the first and
last key-frames. We specify a set of beginning and end hand
positions. The constraint error for evaluation is defined as
the mean distance between the hand and the goal averaged
over the two key-frames.

For the first three tasks, i.e., Task HSI-2, HSI-3 and
GEO-1, the text prompts and motion lengths are sampled
from a selected set of samples from HumanML3D test set,
mainly involving the action walking. The sample ids are
listed below: 000130, 000178, 000285, 000337, 000363,
000600, 000665, 000679, 000759, 000998, 000099,
000696, 000700, 003703, 001161, 001617, 001848,
003193, 003437, 004455 and their mirrored ones. For Task
HOI-1, we manually compose a set of text prompts related
to action moving such as a person moves an object from a
place to another place. The quantitative evaluation for each
unseen task is conducted on running 32 generated samples.
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A.2 Baseline Details

Unconstrained MDM. The original motion representation
for MDM [13] contains both local joint positions and joint
rotations. For simplicity we recover global joint positions
(joint positions in the global coordinate) from local joint
positions. The unconstrained MDM only serves as a nu-
merical reference.
IK and IK+Reg. We implement IK as an ablated ver-
sion of our method, in which the gradient ∇F is back-
propagated to motion x instead of the latent vector z. We
also consider a variant IK with regularization (IK+Reg.), in
which we add a L2-norm regularization term on all joints
Lreg = |x[i+1] − x[i]|, where i is the temporal index. This
results in a combined error function Lconstraint + wLreg.
We empirically set the regularization weight w = 1.0. We
obtain global positions from joint rotations with a human
skeleton template with fixed bone lengths. Like our method,
IK and its variants can also handle arbitrary open-set control
tasks, so we compare with IK and IK+Reg. in all quantita-
tive and qualitative experiments.
Inpainting-based methods. MDM Edit and PriorMDM
finetuned control are inpainting-based methods. They sup-
port motion control tasks by assigning exact joint trajecto-
ries. However, they cannot natively handle tasks described
by constraints, especially, inequality constraints. Moreover,
PriorMDM needs to finetune the network for controlling a
specified joint and only finetuned models for hand, foot and
root trajectories are provided [12]. For the above reasons,
we only compare with MDM Edit on trajectory control-
based tasks, i.e., Task HSI-1, Task GEO-1 and Task HOI-1,
and we compare with PriorMDM on Task GEO-1 and Task
HOI-1, which only involves hand trajectory control.

In their original papers, MDM Edit and PriorMDM fine-
tuned control only support inpainting with root trajectories
and valid local joint positions. Since the constraints for
tasks defined in Section 4 are majorly represented in global
coordinates, we adapt MDM Edit and PriorMDM control
to handle control signals in global positions. Specifically,
we first generate a sample and take its root trajectory. We
then use ad-hoc tricks to generate a trajectory for the control
joint in global positions that satisfies the given constraint
and further convert it to local positions given the root tra-
jectory. Finally we inpaint both the root trajectory and the
local trajectory of the control joint. Similar to IK, as recov-
ering from local joint positions yields invalid bone lengths
(see Table 3 in the main paper), we obtain the global mo-
tion from joint rotations using a human skeleton template
with fixed bone lengths. Also, for PriorMDM we use model
blending [12] for inpainting both root trajectory and control
joint trajectory.

The ad-hoc tricks are designed as follows: for Task HSI-
1 and HOI-1, we directly set the key-frame positions with
the required constraint. For Task GEO-1, we project the

generated hand trajectory onto the given plane to obtain the
new hand trajectory in the global positions.

A.3 Implementation Details

Following unconstrained MDM, we also recover global po-
sitions from local joint positions. Since the error function
for each task may vary, while optimizing with learning rate
0.005 and 100 optimization steps generally works well for
a majority of tasks, we may also increase the initial learn-
ing rate to up to 0.05 for faster convergence in some cases.
Besides, we may add regularization term using absolute po-
sition constraint to preserve desired motion characteristics
for root trajectory or body parts in some cases.
Constraint relaxation. We only apply constraint relaxation
on Task GEO-1, Task GEO-2 and Task HOI-1, which in-
volves absolute position constraints of point, line and plane.
It takes advantage of translation invariance of motion for
fast convergence and compensates for the limited horizon-
tal space coverage of root trajectories in the original mo-
tion prior. For Task GEO-1, we relax the plane constraint
by fitting the generated hand trajectory on an optimal ver-
tical plane. For Task GEO-2, we relax the line constraint
by fitting the foot trajectories on an optimal line. For Task
HOI-1, we relax the required beginning and end points
A,B to fall on the line connecting the beginning and end
points generated by the model Â, B̂ and keep their middle
points the same, i.e., Arelax = P + Â−P

|Â−P |
|A−B|

2 , Brelax =

P + B̂−P
|B̂−P |

|A−B|
2 , where P = (Â+ B̂)/2.

In practice, we update the constraint using the aforemen-
tioned relaxation strategy every K steps and minimize the
constraint error for x using the updated constraints. In this
way the whole optimization process can be implemented as
relax-and-minimize loops. For a fair comparison, IK and
IK+Reg. also use constraint relaxation for experiments in
Table 2 in the main paper.

A.4 Experiment Details for Bone Length Preserving

We provide more experimental details for Table 3 in the
main paper. For the generated motions in Task HSI-1 in
Table 1, we investigate the neck length (bone length be-
tween joint 12 and 15) at the key-frames where the head
height constraint is imposed. We empirically set a range
between 0.08-0.025 and 0.08+0.025, and the neck length
which falls outside this range is considered as incorrect
bone length. The bone length incorrect ratio is defined as
the ratio of key-frames with incorrect neck lengths in all the
generated key-frames. We find that unconstrained MDM
and our method have low incorrect ratio even if we directly
recover global positions from local joint positions. How-
ever, if we recover motions generated by MDM Edit from
local joint positions, the incorrect ratio becomes very large,
indicating that a great percentage of the generated samples
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Task GEO-1: hand touching wall

Method Foot Skate Max Acc. C.Err.

IK w/o relax. 0.375 0.209 0.210
IK w/ relax. 0.187 0.147 0.010

Ours w/o relax. 0.094 0.129 0.118
Ours w/ relax. 0.110 0.104 0.023

Task HOI-1: moving object

Method Foot Skate Max Acc. C.Err.

Ours w/o relax. 0.078 0.077 0.069
Ours w/ relax. 0.114 0.068 0.028

Table A1. Effect of constraint relaxation. Constraint relaxation
helps better reach constraints related to horizontal positions for
optimization-based methods.

Task HSI-1: head height constraint

Method Foot Skate Diversity FID C.Err.

MDM (Unconstrained) 0.086 9.656 0.545 0.118
Ours (NS = 1) 0.075 9.611 0.556 0.012
Ours (NS = 5) 0.072 9.422 0.648 0.002

Table A2. Effect of initial point search. NS denotes the number of
searches. Using a random initial point search leads to significantly
smaller constraint error. It provides a solution for generating mo-
tions that better adhere to the given constraint.

are of invalid human layouts. For this reason, we choose
to recover global motion from joint rotations for inpainting-
based methods MDM Edit and PriorMDM.

A.5 Additional Analysis

Effect of constraint relaxation. As in Table A1, the
constraint relaxation strategy significantly reduces the con-
straint error for goal reaching tasks on the horizontal plane,
such as task hand touching wall and moving object. While
the constraints are better satisfied, we observe slight de-
crease in motion quality, which is indicated by Foot Skate.
Also, it is shown that the constraint relaxation is a general
optimization strategy since there is a significant decrease in
the constraint error for IK as well.
Effect of initial point search. The initial noise z may affect
the final constraint error if the initialized motion is too far
away from reaching the constraints. A straightforward way
would be to sample random noise z in several runs and pick
the result with the smallest constraint error. We conduct
experiment on Task HSI-1 using the same setting as Table
1 in the main paper and compare the results of NS = 1
and NS = 5. Here NS denotes the number of initial point
searches. The results are shown in Table A2. We observe
that using a random initial point search leads to significantly

smaller constraint error but at the cost of diversity and FID
scores. It provides a solution for generating motions that
better adhere to the given constraint.
Diversity of generated motions. By optimizing the latent
vector of generated motions to conform to the motion prior,
our method can generate diverse motions under the same
constraint. For example, in the task of left hand always
touching head, apart from single hand touching the face,
we observe that constraining only one hand can also give
rise to the touching of another hand. (see Fig. 1 and Fig. 4
in the main paper).

B. Details for Motion Programming by LLM

Our programmable motion generation framework also
makes automatic programming possible with the aid of
large language models (LLM). As in Fig. B1, in order to
generate code for the error function F , we first feed instruc-
tions to GPT [2] with the rules and ingredients for motion
programming, e.g., input arguments and functions in the
atomic constraint library. After that, one can feed the textual
description for an arbitrary open-set motion control task to
GPT. In Fig. B1 we show the textual input fed to GPT as
well as the raw code output by GPT for Task GEO-1, HSI-
3 and HSI-4 in the main paper. We observe that an LLM
can pick correct atomic constraints, logical operations (e.g.
“>”, “<”), and procedural operations (e.g. if-else clauses)
for given tasks. Note that the code blocks labeled with GPT
markers for Task GEO-1 and Task HSI-4 in Fig. 4 in the
main paper are slightly modified in the coding style to make
them consistent with other manually written code, without
changing the code logic.
More evaluation. As in Table A3, we design 20 unique
tasks (including those presented in the main paper), and
evaluate the success rate of LLM programming via compar-
ing to manual programming. With little prompt engineer-
ing, the success rate turns out to be 14/20. In failure cases,
it typically picks incorrect inequality logical operations, or
provides excessive and incorrect physical constraints. Nev-
ertheless, we find that LLM comes up with novel constraints
beyond manual programming, e.g. tilt angle constraint for
the action balancing.

C. Discussion and Limitations

Sources of error. As we propose a general framework for
open-set motion control tasks, the performance of individ-
ual modules can be further improved. First, we observe
some unrealistic poses and motion artifacts in our gener-
ated motions. Since the FID score shows that our results
have similar quality to unconstrained MDM (See Table 1 in
the main paper), a possible solution is to enlarge the pre-
trained model together with more training data. Also, for
complex tasks, either an end user or an LLM may have diffi-
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Evaluation tasks

walking with hand always touching face. ✓
walking inside a square. ✓
carrying a ball.
carrying a heavy ball.
walking with feet on a straight line. ✓
walking with hand touching a wall. ✓
walking in a gap between two walls. ✓
walking to avoid an overhead barrier. ✓
picking object from A to B. ✓
walking with velocity constraint on three frames. ✓
standing and keeping balanced with single foot.
walking with head height constraint on three frames. ✓
lying on a bed. ✓
sitting on a chair.
kicking a ball in the last frame. ✓
walking with both hands in contact. ✓
jumping over a barrier.
pointing to a direction with left arm. ✓
dancing with specified velocity magnitude on three frames. ✓
twisting for two circles.

Table A3. Evaluation on motion programming by LLM. Tasks that
are successfully handled by LLM are labeled with ✓.

culty of crafting detailed and appropriate constraints, which
is likely to lead to unnatural motions. Second, the constraint
error sometimes remains big compared to IK, for example,
for the unseen Task HSI-2. Although it is reasonable that IK
directly optimizes on motion x and thus has less difficulty
for reaching the constraint, we will further investigate better
optimization approaches to solve this issue. Possible solu-
tions include (1) combining optimized and IK-based motion
in the denoising process, (2) relaxing on the parameters of
the generation model and involving it in the optimization
process like [8], and (3) searching for more suitable opti-
mizers.

Moreover, the action semantics for the generated motion
is observed to change slightly in the experiments, e.g. for
Task HSI-1. This calls for more suitable generation models
and optimization strategies that can better adhere to the text
condition.
Coverage of the proposed constraint library. We exam-
ine the coverage of our proposed library for daily motions
on BABEL-120 dataset [11]. We find that nearly 16% of
the actions involve periodic, rotational or symmetric move-
ment, whose control is not directly supported by our library.
We plan to further add frequency-domain, rotational and
symmetric constraints into our library.
Comparison with reinforcement learning and trajectory
optimization. We note that RL-based [6, 9, 10] and tra-
jectory optimization approaches [1] also build composi-
tional reward or goal functions for specialized motion con-
trol tasks, and we here provide a discussion for these ap-

proaches: (1) Based on our experiments, the error function
design in this work is not as difficult as reward design in re-
inforcement learning (RL), not only because the error func-
tion only handles the constraints, but the optimization in
latent space is easier to converge than RL training, since the
pre-trained model already provides a neat and smooth man-
ifold as the optimization space. (2) The pre-trained genera-
tion model is easier to accommodate more motion skills and
scale up with more data. This is the main consideration for
us towards solving open-set tasks. RL usually requires spe-
cific design to support diverse tasks [14]. (3) It is easier than
RL to control the semantics via text condition. (4) RL and
ours are complementary. RL has better physics-grounded
qualities. (5) Compared to trajectory optimization, optimiz-
ing latent code better preserves semantics imposed by text
condition. Besides, optimizing latent code may be more
advantageous for composing novel types of actions since it
acts like semantic interpolation in the data distribution. Tra-
jectory optimization normally optimizes on one reference
motion [3, 7].
Time performance. Currently it costs a few minutes for
each customized task, but is still much better than previous
works that require collecting new data and training new net-
works. We have not focused a lot on improving optimiza-
tion efficiency in this work, which might be a direction in
the follow-up works. Although not applicable to real-time
generation, it is suitable for off-line content creation due to
its high customizability.
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Hi, I'd like to give you a task description and you are required to write python code for me. Specifically, the input argument is "Motion", 
it is a list of dictionaries where the index represents the frame and each dictionary stores the 3D coordinates of all human body joints. I 
will also give you a task description containing constraints of human motions. Then you need to write python code to compute the total 
error of the input human motion following my given constraints. The function you can use is as below: "DistToPoint", "DistToLine", 
"DistToPlane", which compute the distance between a point to the other point, a line, and a plane respectively, and "max(margin-
Motion, 0)", "max(Motion-margin,0)", which provide the inequality constraints for motion. Do you understand the rule?

a person is walking with his right hand always touching a vertical wall.

Instruction

Task GEO-1

Task HSI-4

def compute_total_error(motion): 
total_error = 0.0
for frame in motion: 

for joint in frame.values(): 
x = joint['x’] 
z = joint['z’] 
if x < -1 or x > 1: 

error = max(abs(x) - 1, 0) 
total_error += error 

if z < -1 or z > 1: 
error = max(abs(z) - 1, 0) 
total_error += error 

return total_error

a person walks inside a square. The square can be represented as -1<x<1, -1<z<1

Task HSI-3

a person walks forward. The height of the barrier is 1.3m. The person should lower his head and spine in order not to collide with this 
barrier. The walking distance can be represented as the z-axis of the head and spine joint, respectively. The barrier is set between 2m 
and 3m for the walking distance. The actual head height should also include body_width, and the same for spine height.

def compute_total_error(motion, barrier_start, barrier_end, barrier_height, body_width): 
total_error = 0.0
for frame in motion: 

head_height = frame['head']['y'] + body_width
spine_height = frame['spine']['y'] + body_width
head_distance = frame['head']['z’] 
spine_distance = frame['spine']['z’] 
if barrier_start <= head_distance <= barrier_end: 

head_error = max(head_height - barrier_height, 0) 
total_error += head_error

if barrier_start <= spine_distance <= barrier_end: 
spine_error = max(spine_height - barrier_height, 0) 
total_error += spine_error

return total_error

def compute_error(Motion, wall): 
total_error = 0
for frame in Motion: 

# Assuming 'right_hand' is the key for the right hand's coordinates in the dictionary
right_hand_position = frame['right_hand’] 
# Compute the distance from the right hand to the wall
distance = DistToPlane(right_hand_position, wall) 
# Add the distance to the total error
total_error += distance 

return total_error

Figure B1. Motion Programming by LLM. After feeding the instruction to GPT, we provide the textual description for an arbitrary open-set
motion control task. GPT will output code for the corresponding error function. We observe that GPT understands concept like touching
wall by picking the correct distToPlane constraint, and picks correct inequality operations for tasks like avoiding overhead barrier and
walking inside a square.
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