
Appendix

A. Derivations and Proofs
A.1. Perturbed Generation Process

For the reverse generation process from It to It−1, we can represent the transfer probabilities q(It−1|It, I0, Ires) by Bayes’
rule:

q(It−1|It, I0, Ires) = q(It|It−1, I0, Ires)
q(It−1|I0, Ires)
q(It|I0, Ires)

, (22)

where q(It−1|I0, Ires) = N (It−1; I0 + ᾱt−1Ires, β̄
2
t−1I) from Eq. 7, and q(It|It−1, I0, Ires) = q(It|It−1, Ires)
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t I) from Eq. 9. Thus, we have (considering only the exponential term)
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where the C(It, I0, Ires) term is not related to It−1. From Eq. 23, µt(xt, I0, Ires) and Σt(xt, I0, Ires) are represented as
follows,
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Eq. 7 is used for the derivation from Eq. 25 to Eq. 26. Then, we define the generation process to start from pθ(IT ) ∼
N (IT ;0, I),

pθ(It−1|It) = q(It−1|It, Iθ0 , Iθres), (28)

where Iθ0 = It − ᾱtI
θ
res − β̄tϵθ by Eq. 7. Here we only consider Lt−1 in [17],

Lt−1 = DKL(q(It−1|It, I0, Ires)||pθ(It−1|It)) (29)
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where DKL denotes KL divergence. The noise ϵ can be represented as a transformation of Ires using Eq. 16, and then Eq. 30
simplifies to:

Lres(θ) := E
[
λres

∥∥Ires − Iθres(It, t, Iin)
∥∥2] (31)

In addition, the residuals Ires can be represented as a transformation of ϵ using Eq. 16, and then Eq. 30 simplifies to:

Lϵ(θ) := E
[
λϵ ∥ϵ− ϵθ(It, t, Iin)∥2

]
, (32)

We reset the weights, i.e., λres, λϵ ∈ {0, 1}, similar to DDPM [17] discarding weights (or regarding them as reweighting) in
simplified training objective.

8Each step in Eq. 7 adds a new random Gaussian noise in the random forward diffusion. Thus for simplicity, we assume q(It|It−1, I0, Ires) =
q(It|It−1, Ires), it follows that I0 is not important for It when It−1 presents as a condition.



A.2. Deterministic Implicit Sampling

If qσ(It−1|It, I0, Ires) is defined in Eq. 11, we have:

q(It|I0, Ires) = N (It; I0 + ᾱtIres, β̄
2
t I). (33)

Proof. Similar to the evolution from DDPM [17] to DDIM [51], we can prove the statement with an induction argument for
t from T to 1. Assuming that Eq. 33 holds at T , we just need to verify q(It−1|I0, Ires) = N (It−1; I0 + ᾱt−1Ires, β̄

2
t−1I) at

t− 1 from q(It|I0, Ires) at t using Eq. 33. Given:
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q(It−1|I0, Ires) := N (µ̃t−1, Σ̃t−1) (36)

Similar to obtaining p(y) from p(x) and p(y|x) using Eq.2.113-Eq.2.115 in [5], the values of µ̃t−1 and Σ̃t−1 are derived as
following:
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Therefore, q(It−1|I0, Ires) = N (It−1; I0 + ᾱt−1Ires, β̄
2
t−1I). In fact, the case (t = T ) already holds, thus Eq. 33 holds for

all t.
Simplifying Eq. 11. Eq. 11 can also be written as:
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where ϵt ∼ N (0, I). Eq. 41 is consistent with Eq. 12, and Eq. 7 is used for the derivation from Eq. 40 to Eq. 41.

A.3. Coefficient Transformation

For image generation, Iin = 0, thus Eq. 16 can also be written as:

It = (ᾱt − 1)Ires + β̄tϵ (42)
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If the residuals Iθres are represented as a transformation of ϵθ using Eq. 43, Eq. 12 is simplified to
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θ
res − (β̄t −

√
β̄2
t−1 − σ2

t )ϵθ + σtϵt (44)

= It − (ᾱt − ᾱt−1)
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It − (

1− ᾱt−1
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Algorithm 1: Coefficient initialization, transformation, and adjustment.

Input : The initial conditions ᾱT = 1, β̄2
T > 0, T = 1000, and t ∈ {1, 2, . . . T}. The hyperparameter η = 1 for the

random generation process and η = 0 for deterministic implicit sampling. Variance modes have “DDIM”
and “DDIM→RDDM”. The coefficient adjustment mode Adjust=“Alpha”, “Beta”, or “Alpha+Beta”.

Output: The adjusted coefficients ᾱ∗
t , β̄∗

t and σ∗
t .

// (a) Coefficient initialization of DDIM [51]
1 βt

DDIM ← Linspace (0.0001, 0.02, T ) ▷ linear schedule [51]
2 αt

DDIM ← 1− βt
DDIM

3 ᾱt
DDIM ← Cumprod (αt

DDIM ) ▷ cumulative multiplication

4 σ2
t (DDIM)← η

(1−ᾱt−1
DDIM )

1−ᾱt
DDIM

(1− ᾱt
DDIM

ᾱt−1
DDIM

)

// (b) Coefficient transformation from DDIM [51] to our RDDM

5 ᾱt ← 1−
√

ᾱt
DDIM ▷ Eq. 17

6 β̄t ←
√
1− ᾱt

DDIM ▷ Eq. 17

7 σ2
t (RDDM)← η

(β̄2
t−β̄2

t−1)β̄
2
t−1

β̄2
t

// (c) Select variance schedule
8 if Variance==“DDIM” then
9 σ∗

t ←
√
σ2
t (DDIM) ▷ consistent sampling process with DDIM [51] and DDPM [17]

10 else if Variance==“DDIM→RDDM” then
11 σ∗

t ←
√
σ2
t (RDDM) ▷ sum-constrained variance schedule

12 end
// (d) Coefficient adjustment

13 αt ←Power (1− t/T , 1) ▷ linearly decreasing by Eq. 18
14 β2

t ←Power (t/T , 1)·β̄2
T ▷ control the noise intensity in IT by β̄2

T

15 if Adjust==“Alpha” then
16 ᾱ∗

t ←Cumsum (αt), β̄∗
t ← β̄t ▷ cumulative sum

17 else if Adjust==“Beta” then
18 ᾱ∗

t ← ᾱt, β̄∗
t ←

√
Cumsum(β2

t ) ▷ cumulative sum
19 else if Adjust==“Alpha+Beta” then
20 ᾱ∗

t ←Cumsum (αt), β̄∗
t ←

√
Cumsum(β2

t ) ▷ coefficient reinitialization
21 else
22 ᾱ∗

t ← ᾱt, β̄∗
t ← β̄t

23 end
24 return ᾱ∗

t , β̄∗
t , σ∗

t ▷ sampling with adjusted coefficients by Eq. 12

Eq. 48 is consistent with Eq.12 in DDIM [51] by replacing σ2
t with σ2

t (DDIM), and Eq. 17 is used for the derivation
from Eq. 46 to Eq. 47. Thus, our sampling process is consistent with that of DDPM [51] and DDIM [17] by transforming
coefficient/variance schedules.

We present the pipeline of coefficient transformation in Algorithm 1. Fig. 4 (b)(c) show the result of coefficient trans-
formation. In Eq. 17, in addition to the coefficient ᾱt, β̄

2
t being replaced by ᾱt

DDIM , the variance σ2
t is also replaced with

σ2
t (DDIM) to be consistent with DDIM [51] (η = 0) and DDPM [17] (η = 1). In fact, for DDIM [51] (η = 0), the variance

is equal to 0 and does not need to be converted. Therefore, we analyze the difference between the variance of our RDDM
and the variance of DDPM [17] in Appendix A.4.

A.4. Perturbed Generation Process with Sum-constrained Variance

From Eq. 12, the variance of our RDDM (η = 1) is

σ2
t (RDDM) = η

β2
t β̄

2
t−1

β̄2
t

. (49)
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Figure 8. Perturbed generation process with sum-constrained variance on the CelebA 64×64 dataset [36]. When the coefficient schedules
(ᾱt, β̄t) are consistent, RDDM (η = 0) is the same as DDIM (η = 0), but RDDM (η = 1) is different from DDPM (η = 1) due to different
variance schedules (σ2

t ). At different sampling steps, our RDDM has the same total noise, while DDPM has a different total noise. Notably,
all the results in Fig. 8 can be generated from the same pre-trained model via variance transformation in Appendix A.3. In other words, the
RDDM provides a sum-constrained variance strategy, which can be used directly in the pre-trained DDPM without re-training the model.

We replace β̄2
t by ᾱt

DDIM using Eq. 17 and replace β2
t by β̄2

t − β̄2
t−1,
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while the variance of DDPM [17] (η = 1) is
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Our variance is much smaller than the variance of DDPM [17] because 0 < ᾱt−1
DDIM < α1

DDIM < 1 (e.g., α1
DDIM = 0.02

in linear schedule [51]). Compared to σ2
t (DDIM) ≈ 1 [53], the variance of our RDDM is sum-constrained,
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where
∑T

i=1 β
2
t = β̄2

T = 1 for image generation. This is also consistent with the directional residual diffusion process with
perturbation defined in Eq. 7. A qualitative comparison of our RDDM (η = 1) with DDIM [51] (η = 0) and DDPM [17]
(η = 1) is shown in Fig. 8. Notably, for η = 0, our RDDM is consistent with DDIM [51] (in Fig. 5(a)(b)).

A.5. Comparison With Other Methods

The main difference is that to adapt the denoising diffusion, score, flow, or Schrödinger’s bridge to image restoration, they
choose the noise (Shadow Diffusion [14], SR3 [49], and WeatherDiffusion [82]), the residual (DvSR [62] and Rectified
Flow [35]), the target image (ColdDiffusion [2] and InDI [11]), or its linear transformation term (I2SB [29]), which is similar
to a special case of our RDDM when it only predicts noise (SM-N) or residuals (SM-Res), while we introduce residual
estimation but also embrace noise both for generation and restoration (SM-Res-N). We highlight that residuals and noise are
equally important, e.g., the residual prioritizes certainty while the noise emphasizes diversity.

Differences from DDPM [17]. 1) DDPM is not interpretable for image restoration, while our RDDM is a unified,
interpretable diffusion model for both image generation and restoration. 2) Differences in the definition of the forward
process lead to different variance strategies. Our RDDM has sum-constrained variance (much smaller than the variance of
DDPM), while DDPM has preserving variance [53] (see Appendix A.4).

Differences from IDDPM [44]. In the original DDPM [17], for the transfer probabilities pθ(It−1|It) in Eq. 5, the mean
µθ(It, t) is learnable, while the variance Σt is fixed. IDDPM [44] highlights the importance of estimating both the mean
and variance, demonstrating that learning variances allow for fewer sampling steps with negligible differences in sample
quality. However, IDDPM [44] still only involves denoising procedures, and crucially, IDDPM, like DDPM, is thus not
interpretable for image restoration. In addition, IDDPM [44] proposes three alternative ways to parameterize µθ(It, t), i.e.,
predict mean µθ(It, t) directly with a neural network, predict noise ϵ, or predict clean image I0. IDDPM [44] does not predict
the clean image I0 and noise ϵ at the same time, while both the residuals and the noise are predicted for our SM-Res-N.

The essential difference is that, our RDDM contains a mixture of three terms (i.e., input images Iin, target images I0, and
noise ϵ) beyond DDPM/IDDPM (a mixture of two terms, i.e, I0 and ϵ). We emphasize that residuals and noise are equally
important: the residual prioritizes certainty, while the noise emphasizes diversity. Furthermore, our RDDM preserves
the original DDPM generation framework by coefficient/variance transformation (Eq. 17), enabling seamless transfer of
improvement techniques from DDPM, such as variance optimization from IDDPM.

Differences from ColdDiffusion [2]. 1) ColdDiffusion aims to remove the random noise entirely from the diffusion
model, and replace it with other transforms (e.g., blur, masking), while our RDDM still embraces noise diffusion. Notably, we
argue that noise is necessary for generative tasks that emphasize diversity (see Table 1). In fact, since ColdDiffusion discards
random noise, extra noise injection is required to improve generation diversity. 2) To simulate the degradation process for
different restoration tasks, ColdDiffusion attempts to use a Gaussian blur operation for deblurring, a snowification transform
for snow removal., etc. These explorations may lose generality and differ fundamentally from our residual learning. RDDM
represents directional diffusion from target images to input images using residuals, without designing specific degradation
operators for each task. Additionally, RDDM provides solid theoretical derivation, while ColdDiffusion lacks theoretical
justification.

Differences from DvSR [62]. [62] indeed use residual. But they 1) predict the initial clean image from a blurring
image via a traditional (non-diffusion) network, calculate the residuals between the ground truth of the clean image and the
predicted clean image 2) use denoising-based diffusion models predict noise like DDPM [17] and use a linear transformation
of the noise to represent the residuals. They treat the residual predictions as an image generation task, aiming to produce
diverse and plausible outputs based on the initial predicted clean image. Beyond simply building a diffusion model on top
of residuals, we redefine a new forward process that allows simultaneous diffusion of residuals and noise, wherein the target
image progressively diffuses into a purely noise or a noise-carrying input image.

Differences from InDI [11] and I2SB [29]. We can conclude that the forward diffusion of InDI, I2SB, and our RDDM
is consistent in the form of a mixture of three terms (i.e., input images Iin, target images I0, and noise ϵ) beyond the
denoising-based diffusion (a mixture of two terms, i.e, I0 and ϵ). Substituting Ires = Iin − I0 into Eq. 16 results in
It = ᾱtIin + (1 − ᾱt)I0 + β̄tϵ. This resulted It has the same format as Eq.8 in InD (xt = ty + (1 − t)x +

√
tϵtηt),

and is the same format as Eq.11 in I2SB. Similar to Eq. 17 (from our RDDM to DDPM/DDIM), transforming coefficients
leads to complete consistency. However, our RDDM can further extend DDPM/DDIM, InD, and I2SB to independent double
diffusion processes, and holds the potential to pave the way for the multi-dimensional diffusion process. From the initial
stages of constructing a new forward process, our RDDM uses independent coefficient schedules to control the diffusion
of residuals and noise. This provides a more general, flexible, and scalable framework, and inspires our partially path-
independent generation process, demonstrated in Fig. 6 and Fig. 16(b-f) with stable generation across various diffusion rates



Tasks Image Restoration Image Image Image
Shadow Removal Low-light Deblurring Deraining Generation Inpainting Translation

Datasets ISTD LOL GoPro RainDrop CelebA CelebA-HQ CelebA-HQ
AFHQ

Batch size 1 1 1 1 128 64 64
Image size 256 256 256 256 64 64 64
β̄2
T 0.01 1 0.01 1 1 1 1

Iin Iin Iin Iin Iin 0 0 0
Sampling steps 5 2 2 5 10 10 10
Loss type ℓ1 ℓ1 ℓ1 ℓ1 ℓ2 ℓ2 ℓ2
Loss Lres + Lϵ Lres Lres + Lϵ Lres + Lϵ Lϵ Lres, Lϵ Lres, Lϵ

Sampling Method SM-Res-N-2Net SM-Res SM-Res-N-2NetSM-Res-N-2Net SM-N SM-Res-N-2NetSM-Res-N-2Net
Optimizer Adam Adam Adam Adam RAdam RAdam RAdam
Learning rate 8e-5 8e-5 8e-5 8e-5 2e-4 2e-4 2e-4
Training iterations 80k 80k 400k 120k 100k 100k 100k

Schedules αt : P (1− x, 1) αt : P (1− x, 1)αt : P (1− x, 1)αt : P (1− x, 1)αt
DDIM →αt : P (1− x, 1) αt

DDIM →
β2
t : P (x, 1) β2

t : P (x, 1) β2
t : P (x, 1) β2

t : P (x, 1) αt, β
2
t β2

t : P (x, 1) αt, β
2
t

Table 4. Experimental settings for training our RDDM.“SM-Res-N-2Net” is described in Appendix B.2. Two optimizers can be imple-
mented in Lres, Lϵ. We use “SM-Res-N-2Net” and Lres + Lϵ on the SID-RGB dataset [65].

and path variations.

B. Experiments

B.1. Training Details

We use a UNet architecture9 for both residual prediction and noise prediction in our RDDM. The UNet settings remain
consistent across all tasks, including the channel size (64) and channel multiplier (1,2,4,8). Detailed experimental settings
can be found in Table 4. Training and testing for all experiments in Table 4 can be conducted on a single Nvidia GTX 3090.

Image Generation. For comparison with DDIM [51], we convert the αt
DDIM schedule of DDIM [51] into the αt and β2

t

schedules of our RDDM using Eq. 17 in Section 5.2 and Section 6. In fact, a better coefficient schedule can be used for
training in our RDDM, e.g., αt (linearly decreasing) and β2

t (linearly increasing) in Table 2. The quantitative results were
evaluated by Frechet Inception Distance (FID) and Inception Score (IS).

Image Restoration. We extensively evaluate our method on several image restoration tasks, including shadow removal,
low-light enhancement, image deraining, and image deblurring on 5 different datasets. For fair comparisons, the results of
other SOTA methods are provided from the original papers whenever possible. For all image restoration tasks, the images are
resized to 256, and the networks are trained with a batch size of 1. We use shadow masks and shadow images as conditions
for shadow removal (similar to [28, 79]), while other image restoration tasks use the degraded image as condition inputs. For
low-light enhancement, we use histogram equalization for pre-processing. To cope with the varying tasks and dataset sizes,
we only modified the number of training iterations, β̄2

T and sampling steps (5 steps for shadow removal and deraining, 2 steps
for low-light and deblurring) as shown in Table 4. αt is initialized using a linearly decreasing schedule (i.e., P (1 − x, 1) in
Eq. 18), while β2

t is initialized using a linearly increasing schedule (i.e., P (x, 1)). The quantitative results were evaluated by
Mean Absolute Error (MAE), Peak Signal to Noise Ratio (PSNR), Structural Similarity Index Measure (SSIM), and Learned
Perceptual Image Patch Similarity (LPIPS) [73].

Notably, our RDDM uses an identical UNet architecture and is trained with a batch size of 1 for all these tasks. In
contrast, SOAT methods often involve elaborate network architectures, such as multi-stage [13, 70, 80], multi-branch [10],
and GAN [27, 45, 57], or sophisticated loss functions like the chromaticity [20], texture similarity [74], and edge loss [70].

Image Inpainting and Image Translation. To increase the diversity of the generated images, conditional input images
were not fed into the deresidual and denoising network (see Fig. 19).

9Our RDDM is implemented by modifying https://github.com/lucidrains/denoising-diffusion-pytorch repository.



Algorithm 2: Training Pipeline Using AOSA.
Input : A degraded input image Iin and its corresponding ground truth image I0. Gaussian noise ϵ. Time condition

t. Coefficient schedules ᾱ and β̄t. The initial learnable parameters λθ
res = 0.5. Network G with parameters

θ. The initial learning rate l. n is the training iterations number. m is the iterations number of AOSA. The
threshold of shifting training strategies, δ = 0.01.

Output: Trained well parameters, θ, λθ
res.

1 θ ← InitWight (G) ▷ initialize network parameters
2 for i← 1 to n+m do
3 t ∼Uniform ({1, 2, ..., T}), ϵ ∼ N (0, I), Ires ← Iin − I0
4 It ← I0 + ᾱtIres + β̄tϵ ▷ synthesize It by Eq. 7
5 Iout ← G(It, t, Iin)

6 Iθres ← λθ
res × Iout + (1− λθ

res)× fϵ→res(Iout) ▷ fϵ→res(·): from ϵ to Ires using Eq. 16
7 ϵθ ← λθ

res × fres→ϵ(Iout) + (1− λθ
res)× Iout ▷ fres→ϵ(·): from Ires to ϵ using Eq. 16

8 Lauto ←Loss (Iθres, Ires, ϵθ, ϵ) ▷ based on Eq. 53

9 θ, λθ
res

+←−∇θ,λθ
res

(Lauto, l) ▷ updating gradient
10 if abs (λθ

res − 0.5) < δ then
11 pass ▷ adversarial-like training
12 else
13 λθ

res ←Detach (λθ
res) ▷ halt the gradient updates

14 θ ← InitWight (G) ▷ reinitialize network parameters if λθ
res > 0.5 then

15 λθ
res ← 1 ▷ SM-Res

16 else
17 λθ

res ← 0 ▷ SM-N
18 end
19 end
20 end

Sampling Method Network MAE(↓) SSIM(↑) PSNR(↑)
SM-Res Residual network 4.76 0.959 30.72
SM-Res-N-2Net Residual network+noise network 4.67 0.962 30.91
SM-Res-N-1Net One network, only shared encoder 4.72 0.959 30.73
SM-Res-N-1Net One network 4.57 0.963 31.10

Table 5. Ablation studies of sampling methods and network structures on the ISTD dataset [57]. “SM-Res-N-1Net+One network” denotes
to output 6 channels using a network, where the 0-3-th channels are residual and the 3-6-th channels are noise.

B.2. SAMPLING Details

In Section 4.3,we described the empirical selection process for SM-Res or SM-N. Below, we give some additional methods
in detail.

Automatic selection of SM-Res or SM-N by AOSA. We present the motivation, conceptualization, and implementation
pipeline (Algorithm 2) of the Automatic Objective Selection Algorithm (AOSA) as follows:

Step 1. At the initial simultaneous training (similar to SM-Res-N), we do not know whether the network output (Iout) is
residual or noise. Therefore, we set λθ

res = 0.5 to denote the probability that the output is residual (Iθres), and 1− λθ
res is the

probability that the output is noise (ϵθ).
Step 2. We then impose loss constraints on both residual and noise estimation weighted by the learned parameter (λθ

res),
as follows:

Lauto(θ) := λθ
resE

[∥∥Ires − Iθres(It, t, Iin)
∥∥2]+ (1− λθ

res)E
[
∥ϵ− ϵθ(It, t, Iin)∥2

]
. (53)

The joint loss functions Lauto(θ) drive the network to gradually tend to output residuals or noise based on the input. For



Sampling Shadow Deraining Deblurring Generation
Method PSNR/SSIM PSNR/SSIM PSNR/SSIM FID(↓) IS(↑)
SM-Res 30.72/0.959 31.96/0.9509 32.32/0.957 31.47 1.73
SM-N 11.34/0.175 19.15/0.7179 9.49/0.087 23.25 2.05
SM-Res-N-2Net 30.91/0.962 32.51/0.9563 32.40/0.963 28.90 1.78
SM-Res-N-1Net 31.10/0.963 31.79/0.9504 31.69/0.951 28.57 1.81

Table 6. Generalization analysis of “SM-Res-N-1Net+One network”.

example, in the image restoration task with deterministic input, it should be simpler for the network to estimate a clear image
than noise. In contrast, for the image generation task with random noise input, it is simpler for the network to estimate the
noise than a clear image.

Step 3. To enable learning of λθ
res, we then include it in the network computation, allowing gradient transmission. Since

λθ
res denotes the probability that the output is residual, the estimated residual Iθres can be represented as λθ

res × Iout + (1−
λθ
res) × fϵ→res(Iout). fϵ→res(·) represents the transformation from ϵ to Ires using Eq. 16. Similarly, ϵθ can be represented

as λθ
res × fres→ϵ(Iout) + (1− λθ

res)× Iout. This is very similar to the cross-entropy loss function.
Step 4. As the training process is completed, our objective should be to estimate only noise (SM-N) or residuals (SM-Res).

By utilizing the learned λθ
res, we can determine when to switch from an adversarial-like process (residuals vs. noise in Step

2) to a single prediction (residuals or noise). This transition can be controlled, for instance, by setting a condition such as
abs(λθ

res − 0.5) ≥ 0.01. When the network’s tendency to estimate residuals surpasses 51% probability, we set λθ
res to 1 and

halt the gradient updates for λθ
res.

The experimental results were consistent with the empirical analysis in Section 4.3 and verified the effectiveness of AOSA.
For instance, the initial simultaneous training switches to residual learning (SM-Res) for shadow removal and low-light
enhancement in approximately 300 iterations, and to denoising learning (SM-N) for image generation in approximately 1000
iterations. To summarize, AOSA achieves the same inference cost as the current denoising-based diffusion methods [17] with
the plug-and-play training strategy.

SM-Res-N. Both the residuals and the noise are predicted, which can be implemented with two or one networks. SM-Res-
N-2Net. If computational resources are sufficient, two separate networks can be trained for noise and residual predictions, and
the optimal sampling method can be determined during testing. This setting easily obtains a well-suited network for the target
task, and facilitates the exploration of the decoupled diffusion process and the partially path-independent generation process
in Section 5. SM-Res-N-1Net. To avoid training two separate networks, another solution is to simply use a joint network
(i.e., a shared encoder and decoder) to output 6 channels where the 0-3-th channels are residual and the 3-6-th channels are
noise. This setting loses the decoupling property of RDDM, but can achieve dual prediction with a slight cost. Table 5 shows
that the joint network (i.e., SM-Res-N-1Net+One network) achieves the best shadow removal results (MAE 4.57), even better
than two independent networks (4.67). A network with the shared encoder (MAE 4.72) has a slight performance degradation
compared to the independent two networks (4.67). We conduct further generalization experiments on Table 6, indicating

Method MAE(↓) SSIM(↑) PSNR(↑) LPIPS(↓)
S NS ALL S NS ALL S NS ALL

ST-CGAN [57] 10.33 6.93 7.47 0.981 0.958 0.929 33.74 29.51 27.44 -
DSC [19] ¶ 9.48 6.14 6.67 0.967 - - 33.45 - - -
DHAN [10] 8.14 6.04 6.37 0.983 - - 34.50 - - -
CANet [8] 8.86 6.07 6.15 - - - - - - -
LG-ShadowNet [37] 10.23 5.38 6.18 0.979 0.967 0.936 31.53 29.47 26.62 -
FusionNet [13] 7.77 5.56 5.92 0.975 0.880 0.945 34.71 28.61 27.19 0.1204
UnfoldingNet [80] 7.87 4.72 5.22 0.987 0.978 0.960 36.95 31.54 29.85 -
BMNet [79] 7.60 4.59 5.02 0.988 0.976 0.959 35.61 32.80 30.28 0.0377
DMTN [31] 7.00 4.28 4.72 0.990 0.979 0.965 35.83 33.01 30.42 0.0368
Ours (RDDM) 6.67 4.27 4.67 0.988 0.979 0.962 36.74 33.18 30.91 0.0305

Table 7. Shadow removal results on the ISTD dataset [57]. We report the MAE, SSIM and PSNR in the shadow area (S), non-shadow area
(NS), and whole image (ALL).



Input DSC FusionNet BMNet DMTN Ours (RDDM) Ground Truth

Figure 9. More visual comparison results for shadow removal on the ISTD dataset [57].

Input DRBN Zero-DCE++ KinD++ SNR-Aware Ours (RDDM) Ground Truth

Figure 10. More visual comparison results for Low-light enhancement on the LOL dataset [61].

“SM-Res-N-1Net+One network” isn’t bad, but not always the best.

B.3. More Results

Shadow removal. We compare RDDM with DSC [19], FusionNet [13], BMNet [79] and DMTN [31] on the ISTD
dataset [57]. The ISTD dataset [57] contains shadow images, shadow masks, and shadow-free image triplets (1,330 for
training; 540 for testing). Table 3(b), Fig. 7(b), and Fig. 9 demonstrate the superiority of our method. In addition, we
compare RDDM with more shadow removal methods (e.g., ST-CGAN [57], DHAN [10], CANet [8], LG-ShadowNet [37],



Input D&E UTVNet Ours (RDDM) Ground TruthHistogram Equalization

Figure 11. More visual comparison results for Low-light enhancement on the SID-RGB dataset [65].

Low-light (SID-RGB) PSNR(↑) SSIM(↑) LPIPS(↓)
SID [7] 21.16 0.6398 0.4026
D&E [65] 22.13 0.7172 0.3794
MIR-Net[69, 71] 22.34 0.7031 0.3562
UTVNet [78] 22.69 0.7179 0.3417
SNR-Aware [66] 22.87 0.625 -
Our RDDM (2 step) 23.97 0.8392 0.2433
Our RDDM (5 step) 23.80 0.8378 0.2289

Table 8. Quantitative comparison results of Low-light enhancement on the SID-RGB dataset [65]. The results of MIR-Net are reported by
[78].

UnfoldingNet [80]) in Table 7.
Low-light enhancement. We evaluate our RDDM on the LOL datasets [61] (500 images) and SID-RGB [65] dataset

(5,094 images), and compare our method with the current SOTA methods [33, 66, 68, 71, 76–78]. To unify and simplify
the data loading pipeline for training, we only evaluate the RGB low-light image dataset [61, 65], not the RAW datasets
(e.g., FiveK [6]). Table 3(c), Fig. 7(c), and Fig. 10 show that our RDDM achieves the best SSIM and LPIPS [73] and can
recover better visual quality on the LOL [61] dataset. Table 8 shows the low-light enhancement results on the SID-RGB [65]



Input AttentiveGAN RainDropDiff128 Ours (RDDM) Ground Truth

Figure 12. More visual comparison results for deraining on the RainDrop [45] dataset.

Input Deblurgan-v2 Uformer-B Ours (RDDM) Ground Truth

Figure 13. More visual comparison results for deblurring on the GoPro [43] dataset.

dataset of different methods. Our RDDM outperforms the state-of-the-art SNR-Aware [66] by a 4.8% PSNR and a 34.2%



Deblurring (GoPro) PSNR(↑) SSIM(↑) LPIPS(↓)
Deblurgan-v2 [27] 29.55 0.934 0.117
Suin et al. [55] 31.85 0.948 -
MPRNet [70] 32.66 0.959 0.089
DvSR [62] 31.66 0.948 0.059
Uformer-B [60] 32.97 0.967 0.0089
I2SB [29] 29.31 0.906 0.0961
InDI [11] 31.49 0.946 0.058
Our RDDM (2 step) 32.40 0.963 0.0415
Our RDDM (10 step) 31.67 0.950 0.0379

Table 9. Quantitative comparison results of deblurring on the GoPro dataset [43].

Input Input+Noise Ours Ground Truth

Figure 14. More visual results for image inpainting on the CelebA-HQ [23] dataset.

(a) Male→Female (b) Dog→Cat (C) Male→Cat

Figure 15. More visual results for image translation on the CelebA-HQ [23] and AFHQ [9] datasets.

SSIM improvement on the SID-RGB [65] dataset. Fig. 11 shows that our RDDM outperforms competitors in detail recovery
(sharper text of 1st row), and color vibrancy (2nd & 3rd rows), avoiding issues like gray shading and detail blurring.

Image deraining. We make a fair comparison with the current SOTA diffusion-based image restoration method - Rain-
Diff128 [82] (“128” denotes the 128×128 patch size for training) on the RainDrop dataset [45] (1119 images). Rain-
Diff128 [82] feeds the degraded input image as a condition to the denoising network, which requires 50 sampling steps
to generate a clear image from the noise, while our RDDM requires only 5 sampling steps to recover the degraded image
from the noise-carrying input image and outperforms RainDiff128 [82], as shown in Table 3(d) and Fig. 12.

Image deblurring. We evaluate our method on the widely used deblurring dataset - GoPro [43] (3,214 images). Table 9
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Figure 16. More visual results for the partially path-independent generation process. Two networks are used to estimate residuals and noise
separately, i.e., Iθres(It, ᾱt · T ) and ϵθ(It, β̄t · T ) (η = 0).

shows that our RDDM is the second best LPIPS. Fig. 13 shows that our method is competitive with the SOTA deblurring
methods (e.g, Uformer-B [60]) in terms of visual quality.

Image Inpainting and Image Translation. We show more qualitative results of image inpainting (Fig. 14) and translation
(Fig. 15).

B.4. Partially Path-independent Generation Process

Fig. 16(b-f) provides evidence supporting the partially path-independent generation process, demonstrating the robustness
of the generative process within a certain range of diffusion rates (step size per step) and path variation, e.g., converting
DDIM [51] to a uniform diffusion speed in Fig. 16(c). However, excessive disturbances can result in visual inconsistencies,
as depicted in Fig. 16(h)(i). Furthermore, Fig. 16(c) and Fig. 16(g) illustrate that even when the paths are the same, the
variation in diffusion speed significantly impacts the quality of the generated images. This highlights the importance of
carefully considering and controlling the diffusion speed and generation path during the generation process.

We also investigated two reverse paths to gain insight into the implications of the proposed partial path independence.

In the first case, the residuals are removed first, followed by the noise: I(T )
−Ires→ I(0) + β̄T ϵ

−β̄T ϵ→ I(0), as shown in

Fig. 17(b1)(b2). The second case involves removing the noise first and then the residuals: I(T )
−β̄T ϵ→ Iin

−Ires→ I(0). In the
first case, images are successfully generated (as shown in Fig. 17(b)) which exhibit a striking similarity to the default images
in Fig. 17(a). However, the second case shown in Fig. 17(c) fails to go from Iin to I(0) due to Iin = 0 in the generation task.
Figure 17(d) shows the intermediate visualization results of removing the noise first.



(a) Remove residuals and noise simultaneously (c) First remove noise then residuals 

(b) First remove residuals then noise (d) First remove noise
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Figure 17. Special paths of the partially path-independent generation process. Two networks are used to estimate residuals and noise
separately, i.e., Iθres(It, ᾱt · T ), ϵθ(It, β̄t · T ) (η = 0).

B.5. Ablation Studies

We have analyzed the sampling method in Table 1, the coefficient schedule in Table 2, and the network structure for SM-Res-
N in Table 5.

Sampling Methods. We present the results for noise predictions only (SM-N) in Fig. 18. Fig. 18 (b) and (c) illustrate
that estimating only the noise poses challenges as colors are distorted, and it becomes difficult to retain information from the
input shadow image. We found that increasing sampling steps does not lead to improved results from Fig. 18 (b) to Fig. 18
(c), which may be an inherent limitation when estimating only the noise for image restoration. Actually, this is also reflected
in DeS3 [21] (a shadow removal method based on a denoising diffusion model), where DeS3 [21] specifically designs the
loss against color bias. Additionaly, training with batch size 1 may contribute to poor results of only predicting noise.
However, estimating only the residuals (SM-Res) with batch size 1 does not exhibit such problems for image restoration,
as demonstrated in Fig. 18 (d)&(e) and Table 1, further demonstrating the merits of our RDDM. For image inpainting,
SM-Res-N-2Net can generate more realistic face images compared to SM-N and SM-Res, as shown in Fig. 19(d-f). If
computational resources are sufficient, to obtain better image quality for an unknown task, we suggest that two separate
networks can be trained for noise and residual predictions, and the optimal sampling method can be determined during
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Figure 18. Visualizing ablation studies of sampling methods.

testing. If computational resources are limited, the sampling method can be determined empirically (see Section 4.3).

RDDM (SM-Res-N-2Net) metric 1 step 2 step 5 step 10 step 100 step

β̄2
T = 0.01

MAE-ALL (↓) 4.83 4.69 4.67 4.72 4.90
PSNR-S (↑) 36.83 36.98 36.74 36.59 36.41
LPIPS (↓) 0.0344 0.0308 0.0305 0.0314 0.0334

β̄2
T = 1

MAE-ALL (↓) 5.07 4.94 4.90 4.87 4.99
PSNR-S (↑) 36.93 37.20 37.07 37.01 36.62
LPIPS (↓) 0.0346 0.0314 0.0298 0.0300 0.0319

Table 10. Ablation studies of sampling steps for shadow removal on the ISTD dataset [57].

Sampling Steps. Table 10 shows that our RDDM performance improves as the number of sampling steps increases for
shadow removal. Unlike the findings in InDI [11] where one step yields the best MSE reconstruction, RDDM achieved its
best MAE at 5 steps for shadow removal, which may be due to differences in coefficient schedules and sampling methods.
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Figure 19. Visualizing ablation studies of sampling methods for image inpainting on the CelebA-HQ [23] dataset. (g-i) The conditional
input image (a) is not used as an input to the deresidual and denoising network in the generation process from (b) to (f). Compared to (g-i),
the diversity of the generated images in (j-l) decreases.

Certainty and diversity. Indeed, feeding conditional input images (Fig. 19(a)) into the deresidual and denoising network
enhances the certainty of the generated images, while diminishing diversity, as shown in Fig. 19(j-l). Generating a clear target
image directly from a noisy-carrying degraded image (Fig. 19(b)) without any conditions increases diversity, but changes
non-missing regions (Fig. 19(g-i)).

Noise Perturbation Intensity. Table 10 shows that noise might play a beneficial role in restoring image details and
enhancing perceptual quality. For image generation, the diversity of the generated images decreases significantly as β̄2

T

decreases from 1 in Fig. 20(c) to 0.01 in Fig. 20(b). The experiment is related to the mean face [18, 38, 42, 63] and
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Figure 20. Visualizing ablation studies of noise perturbation intensity (β̄2
T ). (a) We change the variance (β̄2

T ) during testing, specifically
by variance transformation via Algorithm 1. (b-c) When β̄2

T decreases from 1 in (c) to 0.01 in (b), the diversity of the generated images
decreases significantly. (d-g) We visualize each step in the generation process. β̄2

T = 0.01 in (d), β̄2
T = 0.1 in (e), β̄2

T = 0.5 in (f), and
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T = 1 in (g). The sampling method is SM-Res-N-2Net with 10 sampling steps.
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Figure 21. Visualizing ablation studies of sampling methods with different intensities of noise perturbation (β̄2
T ). “β̄2

T : 1 → 0.01” denotes
that the variance (β̄2

T ) is changed during testing by variance transformation via Algorithm 1. The sampling steps are 10.

could provide useful insights to better understand the generative process. Fig. 21 shows that modifying β̄2
T during testing

(β̄2
T : 1 → 0.01) causes SM-N to fail to generate meaningful faces. SM-Res-N-2Net including deresidual and denoising

networks can generate meaningful face images like SM-Res, indicating that the denoising network can perform denoising
when modifying β̄2

T , but cannot obtain robust residuals (Iθres) in the sampling process by Eq. 16. In summary, the deresidual
network is relatively robust to noise variations compared to the denoising network.

Resource efficiency. Due to fewer sampling steps, our RDDM inference time and performance is comparable to
lllflow [59], and LLFormer [58] (not diffusion-based). Compared to SR3 [49], our RDDM (only res in Table 11(b)) has
10x fewer training iterations, 10x fewer parameters, 10x faster inference time, and 10% improvement in PSNR and SSIM
on the ISTD [57] dataset (shadow removal). For a fair comparison, priori shadow masks are used in SR3 [49] with a batch



(a) Low-light PSNR(↑) SSIM(↑) LPIPS(↓) Params(M) MACs(G)×Steps Inference Time(s)

LLformer 23.649 0.816 0.169 24.51 22.0×1 = 22.0 0.09×1 = 0.09
LLFlow 25.19 0.93 0.11 17.42 286.33×1 = 286.3 0.18×1 = 0.18
Ours(RDDM) 25.392 0.937 0.116 7.73 32.9×2 = 65.8 0.03×2 = 0.06

(b) Shadow Removal MAE(↓) PSNR(↑) SSIM(↑) Params(M) MACs(G) × Steps Inference Time(s)

Shadow Diffusion [14] 4.12 32.33 0.969 - - -
SR3 [49] (80k) 14.22 25.33 0.780 155.29 155.3×100=15530.0 0.02×100 = 2.00
SR3 [49] (500K) 13.38 26.03 0.820 155.29 155.3×100=15530.0 0.02×100 = 2.00
SR3 [49] (1000K) 11.61 27.49 0.871 155.29 155.3×100=15530.0 0.02×100 = 2.00
Ours (only res, 80k) 4.76 30.72 0.959 7.74 33.5×5 = 167.7 0.03×5 = 0.16
Ours (80k) 4.67 30.91 0.962 15.49 67.1×5 = 335.5 0.06×5 = 0.32

(c) Deraining PSNR(↑) SSIM(↑) Params(M) MACs(G) × Steps Inference Time(s)

RainDiff64[28] 32.29 0.9422 109.68 252.4×10 = 2524.2 0.03×10 = 0.38
RainDiff128[28] 32.43 0.9334 109.68 248.4×50 = 12420.0 0.038×50 = 1.91
Ours (only res) 31.96 0.9509 7.73 32.9×5 = 164.7 0.032×5 = 0.16
Ours 32.51 0.9563 15.47 65.8×5 = 329.3 0.07×5 = 0.35

Table 11. Resource efficiency and performance analysis by THOP. “MAC” means multiply-accumulate operation. (a) Low-light enhance-
ment on the LoL dataset [61]. (b) Shadow removal on the ISTD dataset [57]. For a fair comparison, a priori shadow mask are used in SR3
with a batch size of 1. (c) Deraining on the RainDrop dataset [45].
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Equalization
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(c1) Input (c2) Ours (c3) Ground truth (d)

Figure 22. Failure cases. (a1-a4) Shadow removal on the ISTD dataset [57]. (b1-b4) Low-light enhancement on the SID-RGB dataset [65].
(c1-c3) Deblurring on the GoPro [43] dataset. (d) Image translation (male/dog→cat) on the CelebA-HQ [23] and AFHQ [9] datasets.

size of 1. ShadowDiffusion [14] uses SR3 [49] and Uformer [60], which has a higher PSNR but is also expected to be more
computationally expensive. Our RDDM with SM-Res requires only 4.8G of GPU memory for training. Experiments in
low-light enhancement, shadow removal, and deraining demonstrate the effectiveness of RDDM, enabling computationally-
constrained researchers to utilize diffusion modeling for image restoration tasks.



Accelerating Convergence. The residual prediction in our RDDM helps the diffusion process to be more certain, which
can accelerate the convergence process, e.g., fewer training iterations and higher performance in Table 11(b).

Failure case. We present some failure cases in Fig. 22.

C. Discussions, Limitations, and Further Work
Limitations. Our primary focus has been on developing a unified prototype model for image restoration and generation,
which may result in certain performance limitations when compared to task-specific state-of-the-art methods. To further
improve the performance of a specific task, potential avenues for exploration include using a UNet with a larger number
of parameters, increasing the batch size, conducting more iterations, and implementing more effective training strategies,
such as learning rate adjustments customized for different tasks. For the image generation task, although Table 2 showcases
the development of an improved coefficient schedule, attaining state-of-the-art performance in image generation necessitates
further investigation and experimentation. In summary, while we recognize the existing performance limitations for specific
tasks, we are confident that our unified prototype model serves as a robust foundation for image restoration and generation.

Further Work. Here are some interesting ways to extend our RDDM.
1. In-depth analysis of the relationship between RDDM and curve/multivariate integration.
2. Development of a diffusion model trained with one set of pre-trained parameters to handle several different tasks.
3. Implementing adaptive learning coefficient schedules to reduce the sampling steps while improving the quality of the

generated images.
4. Constructing interpretable multi-dimensional latent diffusion models for multimodal fusion, e.g., generating images using

text and images as conditions.
5. Adaptive learning noise intensity (β2

T ) for an unknown new task.
6. Exploring residuals in distillation (e.g., introducing dual diffusion into consistency models [54]).


