SANeRF-HQ: Segment Anything for NeRF in High Quality

Supplementary Material

1. Implementation Details

We use torch-ngp [6] as our initial NeRF implementation.
When we use 3D points as prompts in evaluation, the views
containing less than k visible points get filtered out automat-
ically and will not be used to train the object field, where k
is a hyperparameter, depending on the total number of input
points.

For both the SAM feature field and the object field, we
use a hash grid as in [7] with 16 levels and feature dimen-
sion of 8 per level. The lowest and highest level are of reso-
lution 16 and 219, respectively. We use a 5-layer 256-hidden
dimensional MLP with skip connections and Layer Normal-
ization after the feature field hash grid, and a 3-layer 256
hidden dimensional MLP with skip connections after the
object field hash grid. In addition to the features from their
respective hash grid, both MLPs also take the features from
the density field as input, where feature MLP also takes the
viewing directions as input. The initial radiance and density
field, the SAM feature field, and the object field are trained
for 15,000, 5,000, and 600 iterations, respectively. All mod-
els are trained on an NVIDIA RTX 4090 GPU.

Ray-Pair RGB loss is included after 300 iterations of
warm-up. We use error maps downsampled by 4 times com-
pared to original training images for Ray-Pair RGB loss
sampling. In each iteration, we update the error maps us-
ing the training ray batch, and for every 200 iterations,
we perform a full update for all error map pixels. During
sampling, we independently sample initial rays on each er-
ror map weighted by their errors, reproject them onto each
view, and subsequently sample 32 additional rays in each
N x N patch centered at the reprojected pixels randomly.
Here we choose N = 8 or 16. A subset of 20 rays are then
sampled from each set as references in the Ray-Pair RGB
loss.

2. Efficiency Evaluation

To provide a more comprehensive understanding of the two
methods storing SAM features mentioned in Section 3.1,
we evaluate the efficiency of the feature distillation method
and the caching method. We randomly sample three scenes
from the Mip-NeRF 360 dataset as reference. By default,
the pre-trained NeRF renders images at 512 x 512 as in-
put to the SAM encoder. Under a batch size of 4,096 and
a maximum iteration of 5,000, it requires on average 666.0
seconds to train the feature field for a single scene, which
can then render feature maps at 64 x 64 resolution from any
viewpoints at 22.4 frames per second (FPS). In contrast, the
caching method can encode the images to feature maps at

3.78 FPS while using extra memory to store the SAM fea-
ture maps (64 x 64, around 4.1MB each frame). Differ-
ent from encoding, the decoding process is much faster, at
168.9 FPS with the pre-computed feature maps.

3. Comparison with Instance Segmentation
Methods

We also compare our method with some instance segmenta-
tion methods. The instance segmentation methods in NeRF
mentioned in our related works do not require user prompts
and can automatically generate segmentation of salient ob-
jects in NeRF. These methods also leverage 2D segmenta-
tion methods for NeRF training but they mainly focus on the
challenge of 3D consistency. Despite their different config-
urations and issues of concern, we still provide the com-
parison with these automatic end-to-end pipelines, show-
ing that our prompt-based method can produce comparable
results to these state-of-the-art auto-segmentation methods.
Instance-NeRF [4] is a training-based methods so we only
compare with it on 3D-FRONT dataset. Figure 1 and Ta-
ble 1 illustrates the visual results and quantitative compar-
ison respectively. For Panoptic Lifting [5] and Contrastive
Lift [2], we also compare on the scenes they mentioned in
the papers to ensure the fairness. Results are shown in Fig-
ure 2 and Table 2.

We use the objects in our evaluation sets as targets and
choose the object that has the largest IoU with the target
object as the predicted results of the instance segmentation
methods. Notice that we only compare with those methods
on the datasets mentioned in their papers, since they do not
leverage SAM to achieve zero-shot generalization.

Metrics Ours Instance-NeRF

Acct 987 99.2
mloU+ 899 92.8

Table 1. Comparison with Instance-NeRF on 3D-FRONT.

. Panoptic ~ Contrastive
Metrics  Ours Lifting Lift
Acc.t 99.6 94.3 94.1
mloU.T  91.1 84.5 81.5

Table 2. Comparison with Panoptic Lifting and Contrastive
Lift. The results are on the data mentioned in their papers.
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Figure 1. Qualitative Comparison with Instance-NeRF. Zoom
in for details especially along the segmentation boundaries.
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Figure 2. Qualitative Comparison with Panoptic Lifting and
Contrastive Lift. Zoom in for details.
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Figure 3. Qualitative Results of the Ray-Pair RGB Loss. The
Ray-Pair RGB loss can help to recover local regions and make the
results more solid.

4. Extending to Dynamic NeRFs

We present a preliminary demonstration in Figure 4 on the
easy extension of our method to 4D dynamic NeRF repre-
sentations. We use HyperReel [1] as our reference NeRF
representation and only supply user prompts for the first
frame of each camera. The prompts are fed into SAM to
retrieve initial masks, whose bounding boxes are used as
the prompts for the next frame. This process repeats until
masks are acquired from all video frames, after which we
proceed to object field training as in previous static scene
cases. The scene is from the Neural 3D Video dataset [3].

5. More Qualitative Results

We demonstrate the qualitative results of the Ray-Pair RGB
loss in Figure 3. The loss helps fill in the missing interior
and boundaries of the masks by enforcing a local match be-
tween the similarity in labels, and the similarity in appear-
ance.

We also provide extra qualitative comparisons between
our method and other zero-shot 3D segmentation methods
mentioned in the main paper. The results are given in Fig-
ures 5, 6, 7, 8. Please watch the video for more qualitative
results.

6. Limitations

Though our method works well in most cases, it relies on
NeRF and SAM, and its performance might be impacted
by scene complexity and NeRF quality. On the other hand,
the Ray-Pair RGB loss may not handle all circumstances
especially given neighboring objects with identical colors
and shading. Nevertheless, we present some results of our
method on relatively challenging scenes to show that it may
still robustly handle some of these cases, where the target
objects are relatively small, in the background, partially oc-
cluded, or adjacent to other objects with similar appearance.
The results are in Figure 9 and 10. We leave relevant poten-
tial improvements as future work.
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Figure 4. Demonstration of Applying SANeRF-HQ to Dynamic NeRFs. The first row are the NeRF RGB images over time, and the
second row are the masks from SANeRF-HQ, which is also dynamic. Our method can be easily adapted to dynamic NeRFs and still retains

reasonable performance. The implementation is based on HyperReel, and the cook spinach scene shown is from the Neural 3D Video
dataset.
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Figure 5. Comparison with SA3D and ISRF on the Replica Room. Data is from the Others subset. SANeRF-HQ can maintain the
object structure while excludes the background.
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Figure 6. Comparison with SA3D and ISRF on the Shoe Rack. Data is from the LERF subset. Our method can reproduce the
segmentation details even with some occlusion.
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Figure 7. Comparison with SA3D and ISRF on Hypersim. Data is from the Others subset. ISRF contains too many false positives,
while SA3D cannot cover the whole object.
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Figure 8. Comparison with SA3D and ISRF on the Espresso. Data is from the LERF subset. Our method produces the most reasonable
segmentation in the distant, complex setting.
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Figure 9. Examples of More Complex Scenarios.
relatively small, and partially occluded.

Figure 10. Examples of Objects with Similar Color. Our method can still distinguish these objects and produce reasonable results in
the presence of neighbouring objects with similar appearance, where the Ray-Pair RGB loss is less helpful but remains robust.
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