
SHiNe: Semantic Hierarchy Nexus for Open-vocabulary Object Detection

Supplementary Material

Appendix
In this appendix, we begin by detailing the detection datasets in
App. A. Then, App. B delves into the process of synthetic seman-
tic hierarchy generation using LLMs, providing the LLM prompts
and a thorough summary of the generated hierarchies’ statistics.
We provide in App. C additional implementation specifics of
SHiNe. We present in App. D an extended analysis of SHiNe’s
components on the FSOD dataset. App. F and App. G extend
the main detection experiments, offering comprehensive summary
statistics. App. I includes additional investigation of SHiNe’s per-
formance on the COCO and LVIS datasets. Finally, App. J show-
cases some qualitative detection results. Our code is publicly
available at https://github.com/naver/shine.

A. Dataset Details

Table 7. Summary of datasets. FSOD [10] and iNatLoc [6] offer
three and six levels of label hierarchies, respectively, with varying
semantic granularity. This feature allows evaluating models on
these datasets at different granularity level in our experiments. To
evaluate, for FSOD, we use its official test split, and for iNatLoc,
we use the combined test and validation splits.

FSOD (test split) iNatLoc (test + val splits)
of Levels 3 6
of Classes L3 L2 L1 L6 L5 L4 L3 L2 L1
per Level 200 46 15 500 317 184 64 18 5
of Images 14152 25000
of BBoxes 35102 25000

In Tab. 7, we present a comprehensive summary of the
two detection datasets used in our evaluation, FSOD [10] and
iNatLoc [6], under the cross-dataset transfer open-vocabulary
evaluation protocol. Given that the original FSOD dataset [10]
provides only a two-level hierarchy, we manually constructed the
L1 level of the label hierarchy (the most abstract one) for a more
comprehensive evaluation, under which we grouped the categories
of level L2 (which corresponds to the upper level category in the
original label space). The L1 level consists of the following 15
label categories:

{"liquid", "instrument", "food", "art",
"plant", "component", "animal", "body",
"wearable item", "infrastructure",
"vehicle", "furnishing", "fungi",
"equipment", "beauty product"}

For FSOD and iNatLoc, we use their official test splits in our
experiments, respectively. Notably, FSOD and iNatLoc offer three
and six levels of label hierarchies, respectively, each characterized
by distinct semantic granularities. Specifically, for the same set of
evaluation images and their associated box-label annotations, the
actual label used for evaluation can be mapped to different linked

labels at each granularity level of the hierarchy. For example, in
FSOD, a box region labeled as "watermelon" at the L3-level
could be mapped to label "fruit" at the L2-level or "food" at
the L1-level. This hierarchical approach to labeling facilitates the
evaluation of these datasets at various granularity levels. See the
annotation files in our codebase.
Evaluation level. During the evaluation, we consider only one
hierarchy level at a time, where the label class vocabulary corre-
sponding to the evaluation level of granularity serves as the target
test (user-defined) vocabulary for both the methods being com-
pared and our proposed SHiNe. This means that model has to
assign labels solely from the given hierarchy level.

B. Semantic Hierarchy Generation
Being a hierarchy-based method, validating SHiNe’s effectiveness
with various hierarchy sources is crucial. In real-world applica-
tions, an ideal semantic hierarchy for the target data might not
always be available. Therefore, our study focuses on evaluating
SHiNe using not only the dataset-specific class taxonomies [6, 7,
10] (the ground-truth hierarchies provided by the datasets as de-
scribed in Sec. A) but also hierarchies synthesized for the target
test vocabulary via large language models (LLMs). Our key idea is
that encyclopedic textual information about semantic categories is
readily available on the Internet. Contemporary LLMs like Chat-
GPT [39], trained on vast internet-scale corpora, inherently en-
code the necessary semantic class taxonomic information in their
weights. Similar to the approach used in CHiLS [38], we employ
an LLM to automatically generate simple three-level semantic hi-
erarchies for the target vocabularies. We use the ChatGPT [39]
gpt-3.5-turbo model as our LLM via its public API to generate the
synthetic semantic hierarchy with a temperature parameter of 0.7.
See our codebase for the generated hierarchies.

In the following subsections, we first detail the process of
prompting LLMs to generate hierarchies (Sec. B.1) and then sum-
marize the statistics of the hierarchies we generated (Sec. B.2).

B.1. Prompting LLMs
In scenarios where a ground-truth hierarchy is unavailable, and
given a label vocabulary Ctest representing the target Classes of In-
terest (CoIs) at a specific granularity level of the evaluation dataset,
the true super-/sub-categories for each CoI are unknown. To gener-
ate a simple 3-level hierarchy for Ctest, we first use ChatGPT [39]
to generate a list of super-categories for each CoI c ∈ Ctest using
the following super-category prompt:

Generate a list of p super-categories that
the following [context] object belongs to
and output the list separated by ’&’: c

where p = 3. Subsequently, following Novack et al. [38], for
each CoI c ∈ Ctest, we query ChatGPT [39] to generate a list of
sub-categories using the following sub-category prompt:

Table 8. Summary statistics of synthetic hierarchies generated by the LLM for our experiments. We present the number of label classes
in the target vocabulary, the total number of generated super-categories and sub-categories, and the average number of generated super-
categories and sub-categories per target class (CoI) for each dataset at each label vocabulary level. Additionally, links are provided to the
experiments using these LLM-generated hierarchies. Note: N/A indicates that only one level of label vocabulary exists in the dataset. †:
At the most abstract (coarsest) level L1 of iNatLoc, all target classes belong to the single super-category Kingdom "Animalia".

Dataset
Corresponding Label Vocabulary Number of Number of Super-categories Number of Sub-categories
Experiments Level Label Classes Total Avg. per class Total Avg. per class

iNatLoc [6] Tab. 3, 4, 9, 10, 11

L6 500 317 0.6 10909 21.8
L5 317 184 0.6 6675 21.1
L4 184 64 0.3 3102 16.9
L3 64 18 0.3 1018 16.7
L2 18 5 0.3 273 15.2
L1 5 1† 0.2 63 12.6

Fig. 4(a) Mis-spe. L6 1966 7585 3.9 35151 17.9

FSOD [10] Tab. 3, 4, 9, 10, 11
L3 200 1298 6.5 4140 20.7
L2 46 295 6.4 702 15.2
L1 15 92 6.1 239 15.9

Fig. 4(b) Mis-spe. L3 1570 8069 5.1 26684 17.0

COCO [30] Tab. 12 N/A 65 395 6.1 1303 20.1

LVIS [19] Tab. 12 N/A 1203 6016 5.0 19975 16.6

ImageNet-1k [7] Tab. 5 N/A 1000 6361 6.4 19741 19.7

Generate a list of q types of the following
[context] and output the list separated by

’&’: c

where q = 10. The [context] prompt is consistently set
to object across all datasets, except for iNatLoc [6], where
context-specific prompts like species or genus are used, align-
ing with its biological tree of life structure. The ’&’ symbol
serves as a separator prompt, facilitating the formatting of Chat-
GPT’s responses for easier post-parsing of category names. More-
over, the final lists of super-categories and sub-categories are the
union of results from t = 3 LLM queries. To be more specific,
we employ the same super-/sub-category prompts for querying the
LLM t = 3 times for each target CoI, and then amalgamate these
LLM responses to form the final results.

In order to generate hierarchies for all datasets, we fix p = 3,
q = 10, and t = 3. It is important to note that we did not perform
any extensive hyperparameter tuning for p, q, and t, as our goal
is to construct hierarchies automatically and validate SHiNe’s ef-
fectiveness with open and noisy hierarchies. Apart from parsing
category names from ChatGPT’s responses, we do not perform any
additional cleaning or organizing of the query results, ensuring an
unbiased evaluation of our method’s inherent efficacy. The hierar-
chies generated for the evaluation datasets are directly employed
as LLM-generated hierarchies by SHiNe in our experiments to as-
sess its performance.
Discussion: Differences between our hierarchy generation
process and the one from CHiLS [38]. For any given target
vocabulary, CHiLS uses GPT-3 to generate only sub-categories,
forming a two-level hierarchy. In our work, we adopt the sub-
category prompt from CHiLS for generating sub-categories.
However, our hierarchy generation strategy significantly differs
from CHiLS in three key respects: i) We generate both super-
categories and sub-categories, creating a more comprehensive
three-level hierarchy. ii) We query our LLM three times (t = 3)

and use the union of the outcomes of these queries as the final set,
aiming to enrich and diversify the category sets with varied catego-
rization principles. iii) As a result of merging and de-duplicating
the generated category names from three LLM queries, we do not
have a predetermined (fixed) number of super-/sub-categories for
each target CoI (class). Thus, our generated hierarchies are more
varied and imbalanced, aligning more closely with real-world sce-
narios.
Discussion: The rationale behind generating p = 3 super-
categories instead of just one. In real-world contexts, there is no
single “optimal” hierarchy for any given vocabulary set. A single
vocabulary can have multiple, equally valid hierarchical arrange-
ments, depending on the categorization principles applied. For
example, "Vegetable salad" might be classified under vari-
ous super-categories—such as "Appetizer", "Cold dish",
"Side dish", or simply "Vegetable"—based on cultural
or contextual differences. Therefore, a truly robust and effec-
tive hierarchy-based method should function with hierarchies
open to diverse categorization principles. In such open hier-
archies, categories are open to multiple categorization principles
(i.e. , one class may link to several super-category nodes). Thus,
we choose to generate p = 3 super-categories per target CoI (cat-
egory) in Ctest at each single LLM query. In our 3-level synthetic
hierarchies, each target CoI falls under multiple super-categories
generated from three times of LLM queries, reflecting various and
diverse categorization principles. This approach allows us to rig-
orously evaluate the efficacy of our proposed SHiNe in realistic,
diverse yet noisy categorization scenarios.

B.2. Summary statistics of the LLM hierarchies
In Tab. 8, we present comprehensive summary statistics for the
synthetic hierarchies generated by the LLM across each dataset at
every label vocabulary level. All synthetic hierarchies are created
using p = 3 and q = 10, with the final super-/sub-categories a de-

duplicated union of results from t = 3 LLM queries. As shown in
Tab. 8, the hierarchies synthesized are both highly open (each CoI
is linked to multiple super-categories) and noisy (sub-categories
might not be present in the dataset). Despite these challenges, as
shown in Tab. 3, Tab. 4, Tab. 5, Tab. 12, and Fig. 4, SHiNe per-
forms effectively using such open and noisy synthetic hierarchies,
consistently improving the baseline results. This underlines the
adaptability and robustness of SHiNe in using open and noisy se-
mantic hierarchies when the ground-truth hierarchies are not avail-
able.

C. Further Implementation Details of SHiNe
C.1. Hierarchy-aware Sentences Integration
This section provides a further explanation of SHiNe’s process for
integrating hierarchy-aware sentences with different hierarchical
structures, as illustrated in Fig. 5.
Single super-category path hierarchy case (ground-truth hier-
archy structures). Fig. 5(a) illustrates the case where the target
Class of Interests (CoI) is linked to a unique super-category at each
higher hierarchical level and multiple sub-categories at each lower
level. In this case, SHiNe employs the Is-A connector to form
hierarchy-aware sentences by integrating the lowest linked sub-
category, the target CoI, and the highest super-category, following
their hierarchical relationships in a bottom-up manner. As a result,
the total number of constructed sentences in this case equals the
number of the lowest linked sub-categories.
Multiple super-category path hierarchy case (LLM-generated
hierarchy structures). Fig. 5(b) displays the case where the tar-
get CoI is linked to multiple super-categories at the upper level
and several sub-categories at the lower level. Here, SHiNe builds
hierarchy-aware sentences by iterating through all combinations of
the linked sub-categories, super-categories, and the target CoI. The
Is-A connector is used to connect these categories in a specific-to-
abstract order. The resulting number of constructed sentences in
this case equals the product of the counts of the lowest linked sub-
categories and the linked super-categories.

C.2. Pseudo-code of SHiNe
We show the pseudocode for the core implementation of SHiNe in
Alg. 1, tailored for a three-level hierarchy.

C.3. Time Complexity Analysis of SHiNe
Let c be the number of Classes of Interest (CoIs) in a given vo-
cabulary, and let p and q represent the average number of re-
lated super-categories and sub-categories per CoI, respectively, in
a hierarchy. Our proposed method, SHiNe, aggregates hierarchy-
aware information from both super-categories and sub-categories
into c nexus-based embeddings (offline). Consequently, at infer-
ence, both memory and time complexity of SHiNe scale linearly
as O(c). It is important to note that this scalability at inference is
unaffected by the number of related super-/sub-categories, because
they are only used offline to generate nc. The offline pipeline to
construct SHiNe OvOD classifier needs to run only once.

In contrast, the time and memory complexities for CHiLS [38]
scale at inference as O(c(1 + q)), because image-text similar-
ity scores are computed for vocabulary nodes and all their chil-

Algorithm 1: Pseudocode for constructing SHiNe classifier
offline for OvOD detectors in a PyTorch-like style.
1 # target_vocabulary: input class vocabulary for
2 # inference
3 # shine_classifier: output SHiNe classifier for
4 # OvOD detectors
5 # hrchy: a semantic hierarchy for the target
6 # vocabulary
7 # aggregator: computes mean vector or principal
8 # eigenvector of the given embeddings
9 # tokenizer: tokenizes given text

10 # text_encoder: VLM text encoder
11
12 # container for SHiNe
13 shine_classifier = []
14
15 # the proposed Is-A connector
16 isa_connector = "which is a"
17
18 # build SHiNe classifier weight vector for each
19 # class in the vocabulary
20 for class_name in target_vocabulary:
21 # retrieve super-category names
22 super_names = hrchy.get_parents(class_name)
23 # retrieve sub-category names
24 sub_names = hrchy.get_children(class_name)
25
26 # form specific-to-abstract branches combining
27 # super-/sub-categories, and the target class
28 # name
29 branches = [
30 [sub_name, class_name, super_name]
31 for super_name in super_names
32 for sub_name in child_names
33]
34
35 # construct hierarch-aware sentences in natural
36 # language using the Is-A connector
37 sentences = [
38 f"a {branch[0]}"
39 + "".join([
40 f", {isa_connector} {name}"
41 for name in branch[1:]
42])
43 for branch in branches
44]
45
46 # tokenize the sentences
47 text_tokens = tokenizer(sentences)
48 # extract textual feature representations
49 text_embeddings = text_encoder(text_tokens)
50
51 # fuse the embeddings into a single nexus-based
52 # classifier vector
53 nexus_vector = aggregator(text_embeddings)
54
55 # append the single classifier vector to the
56 # classifier container
57 shine_classifier.extend(nexus_vector)
58
59 # stack all the constructed classifier vectors as
60 # the SHiNe classifier
61 shine_classifier = torch.stack(shine_classifier)
62
63 # l2-normalize the classifier vectors
64 shine_classifier = l2_normalize(shine_classifier,
65 dim=1)
66
67 # the shine_classifier is output and applied
68 # directly to the OvOD detector

A wooden bat, which is a baseball bat, which is a bat,
which is a sports equipment, which is a equipment

A metal bat, which is a baseball bat, which is a bat,
which is a sports equipment , which is a equipment

A grade 1 bat, which is a cricket bat, which is a bat,
which is a sports equipment , which is a equipment

Sports
equipment

Baseball bat Cricket bat

Bat

A T20 bat, which is a cricket bat, which is a bat, which
is a sports equipment , which is a equipment

L1

Metal
bat

T20
bat

Grade 1
bat

Wooden
bat

Equipment

L2

L3

L4

L5

A baseball bat, which is a bat,
which is a sports equipment

A baseball bat, which is a bat,
which is a hitting instrument

A cricket bat, which is a bat,
which is a hitting instrumentBaseball bat Cricket bat

Bat

A cricket bat, which is a bat,
which is a sports equipment

L1

L2

L3

Sports
equipment

Hitting
instrument

(a) Single Super-category Path Hierarchy Case (b) Multiple Super-category Paths Hierarchy Case

Retrieved Super-/Sub-categories Hierarchy-aware Sentences Retrieved Super-/Sub-categories Hierarchy-aware Sentences

Figure 5. Examples of integrating hierarchy-aware sentences with different hierarchy structures. We use "Bat" as an example of the target
Class of Interest (CoI) for example. The retrieved super-/sub-categories and the target CoI are color-coded in blue and red, and green,
respectively. (a) The target CoI is linked to a unique super-category at each higher hierarchy level and multiple sub-categories at each
lower level, akin to the ground-truth hierarchy structure of the datasets. (b) The target CoI is associated with multiple super-categories at
the upper hierarchy level and multiple sub-categories at the lower level, akin to the simple three-level LLM-generated hierarchy structures.

dren. H-CLIP [14], on the other hand, involves a search proce-
dure online across p · (c + 1) prompt combinations for the top k
(e.g. , k = 5) predicted CoIs, resulting in a time complexity of
O(c+ p · (q + 1) · k). Crucially, the operations for p · (q + 1) · k
only commence after the prediction based on the first c standard
prompts. Unlike SHiNe and CHiLS [38], for which the embed-
dings are precomputed and the class predictions can be fully paral-
lelized, H-CLIP requires encoding the latter p·(q+1)·k CLIP [42]
text embeddings at test time on-the-fly. Furthermore, it employs
a search-on-the-fly mechanism, resulting in significant computa-
tional overheads. This makes H-CLIP a sub-optimal candidate
for many applications, particularly those like detection and seg-
mentation tasks that require per-box, per-mask, or even per-pixel
prediction.

Given the extensive number of super-/sub-categories in the hi-
erarchy employed in our experiments, as detailed in Tab. 8, the
substantial computational overheads imposed by CHiLS and H-
CLIP become evident.

C.4. Implementation Details of Aggregators

Mean-aggregator. During the semantic hierarchy nexus classifier
construction phase, as illustrated in Fig. 2(3), SHiNe, by default,
uses Eq. 1 where the “Aggregator” is the mean operation, as

nc =
1

K

KX

k=1

Etxt (e
c
k) , (3)

where Etxt is the frozen CLIP [42] text encoder, and {eck}Kk=1 rep-
resents the K hierarchy-aware sentences, which are built by in-
tegrating all super-/sub-categories related to the target class (CoI)
c using our proposed Is-A connector. This aggregator, which we
call the mean-aggregator, calculates the mean of the encoded sen-
tences’ embeddings to form the final nexus-based classifier weight
vector for c. This mean vector is the centroid represented within
CLIP’s embedding space, summarizing the general characteristics
of the hierarchy-aware embeddings related to the target CoI. At
inference, the classification decision for a region is based on the
cosine similarity between the visual embedding of the region and
the hierarchy-aware representation defined by the mean vector n,
which we call nexus. This approach renders the decision-making

process less sensitive to variations in the semantic granularity of
the name c. Note that all the embeddings are l2-normalized.
Principal Eigenvector Aggregator Drawing inspiration from
text classification techniques in Natural Language Processing
(NLP) [15, 28, 50], we introduce an alternative aggregation
approach, called the principal eigenvector aggregator. This
method uses the principal eigenvector of the sentence embeddings
matrix as the classifier weight vector nc. Specifically, for a set of
hierarchy-aware sentences {eck}Kk=1, we first apply a Singular Vec-
tor Decomposition (SVD) operation on their embedding matrix as:

USVT = SVD
�

concatKk=1 {Etxt (e
c
k)}

�
, (4)

where U and V are orthogonal matrices representing the left and
right singular vectors, respectively, and S is a diagonal matrix
with singular values in descending order. Subsequently, we can
derive the principal eigenvector, corresponding to the largest sin-
gular value in the sentence embedding matrix, by selecting the first
column of matrix V as:

nc = V[:, 0] , (5)

where nc serves as the nexus-based classifier vector for the tar-
get class c. In contrast to the mean-aggregator, the principal
eigenvector aggregator captures the dominant trend in the sen-
tence embeddings (as known as their “theme”, to maintain NLP
terminology), to effectively represent the CoIs. Note that all the
embeddings are l2-normalized.

Next, we explain the rationale behind this aggregator design.
In high-dimensional semantic spaces like the 512-dimensional
vision-language aligned embedding space of CLIP ViT-B/32, the
principal eigenvector is able to capture the most significant seman-
tic patterns or trends within the embeddings. This approach stems
from the understanding that the direction of greatest variance in
the space contains the most informative representation of seman-
tic embeddings. Projecting the high-dimensional hierarchy-aware
sentence embeddings of a target class (CoI) onto this principal
eigenvector yields a condensed yet information-rich representa-
tion, preserving the essence of the original hierarchy-aware sen-
tences. Consequently, during inference, classification decisions
for a region are based on the cosine similarity between the region’s

embedding and the semantic pattern or trend depicted by the prin-
cipal eigenvector. This differs from the representation centroid
approach used by the mean-aggregator.

We compare the mean-aggregator and the principal eigen-
vector aggregator in Sec. 4.1 of the main paper. While the princi-
pal eigenvector aggregator shows slightly lower performance com-
pared to the mean-aggregator in general, its potential application
in VLM tasks might be interesting for future research. In gen-
eral, given the intimate connection between computer vision and
NLP in open-vocabulary models, we believe in the importance of
enabling more connections between the two fields—in this case,
drawing from the NLP field of topic modeling.

D. Extended Analysis of SHiNe on FSOD
In Fig. 6, we present an expanded study of the core components
of SHiNe, examining their effectiveness across various levels of
label granularity on both the iNatLoc and FSOD datasets. The
results from FSOD align with those observed in the iNatLoc-only
study shown in Fig. 3 of the main paper. Next, we provide further
analysis of SHiNe’s core components.
Extended discussion: the Is-A connector effectively integrates
hierarchy knowledge in natural sentences. The effectiveness of
the proposed Is-A connector is studied in Fig. 6(a). Excluding
the top (abstract) levels where all methods, including Ens, Con-
cat, and Is-A, revert to the plain baseline due to the absence of
further parent nodes, the methods leveraging super-category in-
formation consistently outperform the baseline across nearly all
levels of granularity. This improvement is attributed to direct-
ing the model’s focus towards more general concepts via super-
category-inclusive classifiers. An exception occurs at the second
level of FSOD (Fig. 6(a-FSOD-L2)), where no method exceeds
the baseline. We speculate that at this level, target categories like
"Fruit" are already highly abstract, rendering the addition of
more abstract parent categories like "Food" redundant in clari-
fying ambiguities. Nevertheless, this challenge is alleviated when
sub-categories are also included in the aggregation step. In com-
parative terms, the Is-A and Concat connectors yield greater gains
than Ens, highlighting the advantage of capturing internal seman-
tic relationships for distinguishing between classes. Notably, our
Is-A connector surpasses Concat at all levels of granularity in both
datasets, improving the baseline mAP50 by up to +39.4 points on
iNatLoc (Fig. 6(a-iNat-L5)) and +2.5 points on FSOD (Fig. 6(a-
FSOD-L3)). This indicates the superior effectiveness of Is-A’s ex-
plicit modeling of category relationships compared to the mere se-
quential ordering of class names from specific to abstract by Con-
cat. Overall, the integration of more abstract concepts proves ben-
eficial in object detection across diverse label granularities, with
our Is-A connector particularly excelling due to its effective in-
corporation of hierarchical knowledge into natural language sen-
tences, achieved by explicitly modeling internal category relation-
ships.
Extended discussion: A simple mean-aggregator is sufficient
for hierarchy-aware sentences fusion. The impact of the aggre-
gation step is analyzed in Fig. 6(b), focusing on both the mean-
aggregator (M-Agg) and the principal eigenvector aggregator (PE-
Agg). These aggregators consistently outperform the baseline
across various models and levels of label granularity in all datasets.

Notably, their advantage becomes more pronounced with increas-
ingly abstract target vocabularies, surpassing the benchmarks set
by the Is-A method. This is especially evident in cases involving
highly abstract label vocabularies, where these aggregation meth-
ods significantly improve baseline performance, achieving gains
of up to +9.8 points in iNatLoc (Fig. 6(b-iNat-L1)) and +20.5
points in FSOD (Fig. 6(b-FSOD-L1)).

These results underscore the effectiveness of the aggregation
step in fusing hierarchy-aware sentences into semantic nexus-
based classifiers. This fusion allows the nexus-based classifier
to use both specific knowledge from sub-categories and abstract
knowledge from super-categories, thereby improving the baseline
detector’s ability to discriminate visual object robustly.

E. Comparison with Additional Baselines
To further validate the effectiveness of the proposed Is-A prompt-
ing method, we further compare SHiNe with two additional
baselines: i) Root-Stmt prompting, which explicitly states the
root (target) class and its super/sub-classes using the template like
"A bat, which is a sports equipment and can
be instantiated in a wooden baseball bat or
a baseball bat"; ii) 80-Prompts, where we embed the
target class name into the 80 hand-crafted prompts from CLIP [42]
and average the scores. As shown in Tab. 9, methods leveraging a
hierarchy consistently surpass the 80-prompt ensemble baseline,
demonstrating the benefits of leveraging hierarchy knowledge.
Moreover, SHiNe’s superior performance to the Root-Stmt
baseline suggests that Is-A prompting and nexus aggregation is
more effective for combining hierarchy information.

Table 9. Comparison with additional baseline methods on iNatLoc
and FSOD datasets. Detic with Swin-B backbone trained with
LVIS and IN-21k is used as baseline. mAP50 is reported.

H
rc

hy Set iNatLoc @mAP50 FSOD @mAP50

Level L6 L5 L4 L3 L2 L1 ∆ L3 L2 L1 ∆

N
/A Baseline 58.6 54.9 73.1 63.8 65.3 65.4 - 66.0 38.4 24.7 -

80-Prompts 59.3 55.9 73.4 66.9 66.4 65.6 +1.1 66.1 38.7 26.0 +0.6

G
T Root-Stmt 86.3 83.1 83.9 82.6 72.1 66.6 +15.6 66.7 46.7 31.6 +5.3

SHiNe 86.3 86.8 87.7 86.9 78.1 70.3 +19.2 66.7 51.4 42.2 +10.4

F. Extended Main Experimental Results
In Tab. 10, we present additional experimental results from apply-
ing our proposed SHiNe to Detic [72] with a Swin-B [32] back-
bone, trained using only LVIS and LVIS combined with IN-L [7]
as auxiliary weak supervisory signals. This observation is consis-
tent with those in Tab. 3 from the main paper, demonstrating that
SHiNe consistently and substantially improves the performance of
the baseline OvOD detector on both iNatLoc and FSOD datasets.
This improvement spans across various label vocabulary granular-
ities and is evident with both the ground-truth hierarchy (GT-H)
and a synthetic hierarchy generated by LLM (LLM-H).

G. Summary of the Main Experiments
Beyond the per-level comparison in Tab. 3 of the main paper,
Fig. 7 offers an extended comparison (calculated from Tab. 3) us-

Level 4

Level 1 (top)

Level 1 (top)

II III IVI

Level 5

Level 2

Level 2

II III IVI

Is-A

Ens

Concat

Baseline

Level 6 (leaf)

Level 3

Level 3 (leaf)

II III IVI

Is-A

Ens

Concat

Baseline

Is-A

Ens

Concat

Baseline

(a) Study of hierarchy-aware sentence integration

iN
at

-L
oc

: 6
 le

ve
ls

FS
O

D
: 3

 le
ve

ls

Level 4

Level 1 (top)

Level 1 (top)

II III IVI

Level 5

Level 2

Level 2

II III IVI

Level 6 (leaf)

Level 3

Level 3 (leaf)

II III IVI

M-Agg

Is-A

PE-Agg

Baseline

M-Agg

Is-A

PE-Agg

Baseline

M-Agg

Is-A

PE-Agg

Baseline

(b) Study of aggregator
iN

at
-L

oc
: 6

 le
ve

ls

m
AP50 (%

)

100

m
AP50 (%

)
m

AP 50(%
)

0
100

0
100

0

I: LVIS II: LVIS + IN-L III: LVIS + IN-21k IV: LVIS & COCO + IN-21k

FS
O

D
: 3

 le
ve

ls
Figure 6. Further study of hierarchy-aware sentence integration methods (left) and aggregators (right) across various label granularity
levels on both iNatLoc and FSOD datasets. Darker color indicates higher mAP50. Components used by default in SHiNe are underlined.
Detic [72] with Swin-B backbone, trained using various combinations of supervisory signals described in Tab. 2, serves as the baseline
open-vocabulary detector for all methods evaluated. To evaluate the effectiveness of hierarchy-based components, we use the ground-truth
hierarchy for all methods that rely on hierarchies.

(1) LVIS (2) LVIS + IN-L

AM

HM

GM

MinMax

AM

HM

GM

Min

Med

Max

(5) LVIS (6) LVIS + IN-L

AM

HM

GM

Min

Med

Max

AM

HM

GM

Min

Med

Max

(3) LVIS + IN-21k (4) LVIS & COCO + IN-21k

AM

HM

GM

Min

Med

Max

AM

HM

GM

Min

Med

Max

(7) LVIS + IN-21k (8) LVIS & COCO + IN-21k

AM

HM

GM

Min

Med

Max

AM

HM

GM

Min

Med

Max

Med

Baseline SHiNe w. GT Hierarchy SHiNe w. LLM-generated Hierarchy

iN
at

-L
oc

 S
um

m
ar

y
FS

O
D

 S
um

m
ar

y

ResNet-50 Backbone Swin-B Backbone

Figure 7. Additional summary statistics across all levels for the main experimental results in Tab. 3 for iNatLoc (upper) and FSOD (lower),
respectively. This summary includes various measures for mAP50, such as arithmetic mean (AM), harmonic mean (HM), geometric mean
(GM), minimum value (Min), median (Med), and maximum value (Max), calculated across all granularity levels within each dataset. A
larger area indicates better performance across various metrics. Gray dashed gridlines are scaled from 10 (innermost) to 100 (outermost).

Table 10. Additional results are provided for Detic [72] with a
Swin-B backbone, trained using both I-LVIS and II-LVIS+IN-L
supervisory signal combinations. Detection performance across
varying label granularity levels on iNatLoc (upper) and FSOD
(lower) datasets are reported. SHiNe is directly applied to the
baseline detector (BL) [72] with ground-truth (GT-H) and LLM-
generated (LLM-H) hierarchies. mAP50 (%) is reported.

Swin-B Backbone

I - LVIS II - LVIS + IN-L

Se
t

L
ev

el

BL SHiNe SHiNe BL SHiNe SHiNe
(GT-H) (LLM-H) (GT-H) (LLM-H)

iN
at

L
oc

L6 52.1 76.7(+24.6) 74.0(+21.9) 50.9 83.8(+32.9) 78.8(+27.9)
L5 49.4 77.7(+28.3) 68.4(+19.0) 45.6 84.8(+39.2) 69.0(+23.4)
L4 64.3 76.6(+12.3) 73.7(+9.4) 63.8 84.4(+20.6) 79.3(+15.5)
L3 54.7 75.3(+20.6) 73.2(+18.5) 52.5 83.0(+30.5) 78.7(+26.2)
L2 54.3 62.1(+7.8) 62.8(+8.5) 60.4 73.1(+12.7) 75.1(+14.7)
L1 49.4 49.7(+0.3) 50.7(+1.3) 49.7 59.4(+9.7) 49.8(+0.1)

FS
O

D L3 58.6 61.1(+2.5) 61.0(+2.4) 60.4 62.7(+2.3) 62.1(+1.7)
L2 32.2 46.5(+14.3) 35.6(+3.4) 31.6 46.6(+15.0) 33.5(+1.9)
L1† 18.0 38.5(+20.5) 23.7(+5.7) 18.2 35.9(+17.7) 22.3(+4.1)

ing various summary statistical metrics. As shown in Fig. 7, our
proposed SHiNe consistently and markedly enhances the baseline
OvOD detector’s performance across a range of summary met-
rics, including arithmetic mean (AM), harmonic mean (HM), geo-
metric mean(GM), on both datasets. The harmonic and geometric
means are employed to present the evaluation results from diverse
perspectives, particularly in contexts where extreme values might
skew the interpretation. These means are less influenced by ex-
treme values, such as exceptionally high or low mAP50 scores at
specific granularity levels. The enhancement from SHiNe is ap-
parent when employing both the ground-truth hierarchy and a syn-
thetic hierarchy generated by the LLM. Notably, SHiNe most sig-
nificantly improves the baseline’s weakest performance (minimum
mAP50), suggesting a notable improvement in performance con-
sistency by improving the minimum achieved performance across
granularity levels. These results demonstrate that SHiNe not only
boosts overall performance but also enhances consistency across
different vocabulary granularities, a crucial aspect for real-world
applications.

H. Experiments with other OvOD Detectors
We further assess SHiNe’s performance on top of an additional
OvOD detector, CORA [61], and present the results alongside
VLDet [29] with ResNet-50 [21] in Tab. 11. These results and im-
provements are consistent with those using Detic [72], CoDet [33],
and VLDet [29], further validating SHiNe’s effectiveness.

I. Further Experiments on COCO/LVIS
This section extends the evaluation of SHiNe to COCO [30] and
LVIS [19], following the open-vocabulary evaluation (OVE) pro-
tocol as described in [73]. According to the OVE protocol, datasets
are divided into base and novel classes; models are trained on base
classes with bounding box annotations and then evaluated on novel
classes and their union. The base classes are disjoint from the

Table 11. Comparison with CORA [61] and VLDet (VLD) [29]
on iNatLoc and FSOD. SHiNe is applied to the baseline meth-
ods, respectively. All methods employ ResNet-50 [21] as back-
bone. Note that CORA uses only box-annotated COCO [30]
base split for training, while VLDet uses box-annotated LVIS [19]
and image-caption-annotated CC3M [49] as supervisory signals.
mAP50 (%) is reported.

Se
t

L
ev

el CORA SHiNe SHiNe VLD SHiNe SHiNe
(GT-H) (LLM-H) (GT-H) (LLM-H)

iN
at

L
oc

L6 31.2 54.2(+23.0) 54.8(+23.6) 48.9 62.4(+13.5) 64.8(+15.9)
L5 22.6 51.9(+29.3) 35.7(+13.1) 44.3 60.6(+16.3) 52.6(+8.3)
L4 21.7 50.7(+29.0) 36.2(+14.5) 42.9 58.7(+15.8) 53.6(+10.7)
L3 26.0 50.5(+24.5) 43.4(+17.4) 43.8 63.5(+19.7) 58.7(+14.9)
L2 20.0 33.2(+13.2) 24.8(+4.8) 34.3 54.4(+20.1) 46.9(+12.6)
L1 18.3 16.2(-2.1) 13.0(-5.3) 37.0 43.2(+6.2) 38.6(+1.6)

FS
O

D L3 49.3 51.4(+2.1) 51.1(+1.8) 48.8 53.8(+5.0) 53.6(+4.8)
L2 21.9 33.6(+11.7) 23.5(+1.6) 23.5 39.3(+15.8) 29.8(+6.3)
L1 11.6 26.2(+14.6) 14.1(+2.5) 12.8 31.0(+18.2) 17.3(+4.5)

Table 12. Comparison of detection performance on COCO and
LVIS benchmarks using the OVE protocol. We use Detic [72]
with a ResNet-50 backbone as the baseline detector (BL). SHiNe
is applied to the baseline using hierarchies generated by LLM. All
models receive strong supervision on the base class partitions of
both datasets, with box-class annotations. A comparison of differ-
ent weak supervisory signals is also included. mAP50novel and
mAPnovel denote performance evaluated on the novel class par-
titions (17 classes for COCO and 337 classes for LVIS), while
mAP50all and mAPall represent evaluations on both base and
novel classes (65 classes for COCO and 1203 classes for LVIS).

C
O

C
O

Dweak mAP50novel mAP50all

BL SHiNe BL SHiNe

N/A 1.3 3.2(+1.9) 39.3 39.8(+0.5)
COCO Captions 24.0 24.3(+0.3) 44.8 44.9(+0.1)

LV
IS

Dweak mAPnovel mAPall

BL SHiNe BL SHiNe

N/A 17.6 20.9(+3.3) 33.3 33.6(+0.3)
IN-L 26.7 25.5(-1.2) 35.8 35.3(-0.5)
Conceptual Captions 19.3 21.5(+2.2) 33.4 33.5(+0.1)

novel classes. We follow the base/novel class partitions for COCO
and LVIS as used in [72]. Both datasets have a single, flat class
vocabulary: COCO with 65 classes (48 base, 17 novel) and LVIS
with 1203 classes (866 base, 337 novel). We use Detic [72] with
a ResNet-50 [21] backbone, trained on the box-class annotated
base classes with various weak supervisory signals, as the base-
line OvOD detector in this experiment. Specifically, the baseline
is trained on COCO-base with 48 classes or LVIS-base with 866
classes. We explore three types of weak supervisory signals as
proposed in [72]: i) N/A, using only strong supervisory signals;
ii) IN-L, a 997-class subset of ImageNet-21k [7] intersecting with
the LVIS vocabulary; iii) Conceptual Captions [49] dataset; and
iv) COCO Captions [72] dataset. For Conceptual Captions and
COCO Captions, nouns are parsed from the captions, and both
image labels and captions are used for weak supervision [72]. We
report mAP50 for COCO and the official mask mAP metric for
LVIS as suggested in [19].

L3

L2

L1

Figure 8. Qualitative detection results of SHiNe applied to Detic [72] with Swin-B [32], evaluated on the FSOD [10] dataset across three
different label granularity levels. All models are trained using the LVIS + IN-L dataset as strong and weak supervisory signals, respectively.
It is advisable to zoom in for a clearer view.

We evaluate and compare SHiNe with the baseline under the
OVE protocol. In the absence of available ground-truth hierarchy
information, we use the LLM to generate simple 3-level synthetic
hierarchies for the target vocabularies of COCO and LVIS, as de-
scribed in Tab. 8. Consequently, SHiNe is constructed using these
generated hierarchies. As shown in the OVE evaluation results
in Tab. 12, SHiNe notably improves the performance of the base-
line detector on both COCO and LVIS benchmarks under the OVE
protocol. Interestingly, SHiNe yields a greater performance gain
on the novel class partitions. However, this advantage becomes
less pronounced when assessing combined base and novel classes.
This is attributed to the model overfitting on the base classes to
the text classifier based on the standard "a {Class Name}"
prompts during strongly supervised training. Replacing this over-
fit classifier with the SHiNe classifier leads to significant gains on
novel class partitions, but slightly reduces performance on base
class partition test data. Nevertheless, the consistent improve-
ments achieved by SHiNe across most cases in Tab. 12 underscore
its effectiveness on the COCO and LVIS benchmarks.

J. Qualitative Analysis of SHiNe
In Fig. 8 and Fig. 9, we showcase the qualitative detection results
of SHiNe when applied to Detic [72] across various label granular-
ity levels on the FSOD and iNatLoc datasets. For each granularity
level, the same confidence threshold is consistently applied.

L6

L5

L4

L3

L2

L1

Figure 9. Qualitative detection results of SHiNe applied to Detic [72] with Swin-B [32], evaluated on the iNatLoc [6] dataset across six
different label granularity levels. All models are trained using the LVIS + IN-L dataset as strong and weak supervisory signals, respectively.
It is advisable to zoom in for a clearer view.

