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Supplementary Material

6. Appendix

In this supplementary material, we first present more visual
results of different models. Then, we provide more ablation
studies to indicate the relationship between the proposed
mesh interpolation algorithm and the learning framework.
The setting of several essential parameters is also discussed.
Finally, we conduct experiments for surface reconstruction,
mesh deformation, and robustness evaluation to further ex-
ploit the properties of our network.

6.1. Comparison with SoTA methods

More visual comparisons with SoTA methods are shown in
Fig. 10. We employ objects with complicated structures to
bear out the superiority of SPU-PMD in preserving metic-
ulous details, such as the chair grille and helical structure.
From this figure, we can discern that most SoTA approaches
result in obvious distortion in the upsampling process.

6.2. Ablation study

Mesh interpolation and SPU-PMD. To demonstrate the
relationship between the mesh interpolation algorithm and
the complete learning framework, we compare the upsam-
pling results produced by solely adopting mesh interpo-
lation and SPU-PMD. As shown in Table. 5, the SPU-
PMD model that combines mesh interpolation with learn-
able deformation significantly outperforms the mesh inter-
polation algorithm in all evaluation metrics. From Fig. 8, it
can be seen that SPU-PMD provides the upsampled point
clouds with more uniform distributions and fewer unex-
pected holes. These experiments illustrate that mesh inter-
polation is an auxiliary part rather than the dominant com-
ponent in SPU-PMD.

Table 5. Ablation study of deep learning structure.

Input Mesh Interpolation SPU-PMD
CD ↓
10−3

HD ↓
10−3

CD ↓
10−3

HD ↓
10−3

Sparse (512) 2.515 17.206 1.690 13.568
Medium (1,024) 1.496 11.174 0.892 8.252
Dense (2,048) 1.035 7.610 0.544 4.926

Moving Radius. We regulate the extent of deformation by
specifying the moving radius in different deformation steps.
In other words, reducing the radius brings about more del-
icate mesh deformation. To analyze the effect of moving
radius, we select four radius settings. At first, we utilize

Figure 8. Comparison of mesh interpolation and SPU-PMD. The
mesh interpolation method produces the results with fragmented
structures. In contrast, SPU-PMD provides complete and uniform
results.

Figure 9. Ablation study of moving radius. Because the moving
radius R1 is large, the results are more uniform, but there are more
noise points and blurred structures.

two constant radii R1 and R2 that are set to 0.1 and 0.01
respectively. Besides, two varying settings R3 and R4 are
employed. In R3, we set [0.1, 0.08] for deformation A and
[0.03, 0.02] for deformation B. In comparison, the baseline
setting (R4) is determined as [0.1, 0.08] and [0.02, 0.01].
Under the numerical analysis shown in Table. 6, the models
with varying radius settings have better performance than
the counterparts with constant radii. The corresponding vi-
sual results are exhibited in Fig. 9, which demonstrates that
a large and constant radius leads to blurred details and more
noisy points. This study verifies that varying radii for dif-
ferent deformation steps are more helpful for SPU-PMD to
govern the mesh variation and deformation B demands mi-
nor discrepancy.



Figure 10. More visual comparisons with other methods. These results demonstrate the advantages of our method in detailed structure
preservation.

Table 6. Ablation Study of moving radius.

Radius Sparse (512) input Medium (1,024) input Dense (2,048) input
CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

R1 3.306 33.570 26.345 2.209 23.412 19.592 1.647 17.076 14.458
R2 1.705 13.789 4.156 0.887 8.262 2.809 0.553 5.027 1.889
R3 1.688 13.595 4.271 0.884 8.352 2.915 0.548 4.954 1.984
R4 1.690 13.568 4.082 0.892 8.252 2.765 0.544 4.926 1.861

Query Radius. Mesh construction is an essential step for
our mesh interpolation, which is achieved by using the ball
query. As a crucial parameter, the ball radius influences the
mesh construction. In this study, we define all ball query

Table 7. Ablation study of query radius.

Radius Sparse (512) input Medium (1,024) input Dense (2,048) input
CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

CD ↓
10−3

HD ↓
10−3

P2F ↓
10−3

Q1 2.935 19.098 2.688 1.718 12.073 1.720 1.281 8.743 1.065
Q2 2.800 18.356 2.739 1.581 11.490 1.760 1.152 8.062 1.091
Q3 2.479 18.161 3.013 1.465 11.889 1.914 1.045 8.166 1.168
Q4 2.515 17.206 2.949 1.496 11.174 1.876 1.035 7.610 1.162

radii based on the average distance of the nearest neighbors,
denoted as r. Specifically, the first query radius Q1 is con-
stant, set as r, while the other three are with varying radii
(Q2: [r, 0.8r], Q3: [r, 1.8r], and Q4: [r, 1.3r]). Notably,



Figure 11. Visualization of mesh deformation.

this study is conducted by only applying mesh interpolation
rather than the complete framework for avoiding potential
effects from training. From Table. 7, we find out that the
query radius within a certain range, like Q4, results in better
performance. Meanwhile, a large query radius leads to ob-
vious degradation (like the results of Q3). In addition, sim-
ply using the average distance as the query radius has great
potential to generate points close to the underlying surface.
The visual comparisons of the models with different query
ball settings are presented in Fig. 12, which indicates that
an appropriate query setting enables the mesh interpolation
algorithm to generate more compact shapes.

Figure 12. Ablation study of query radius. The smoothness and
compactness of the results provided by the models with Q3 and
Q4 are better than the others.

6.3. Surface reconstruction

We use the Poisson surface reconstruction algorithm [11]
to create watertight surfaces from the results of our model,
as shown in Fig. 13. The surfaces reconstructed from the
upsampled point clouds are clean and smooth, indicating
the smoothness and cleanness of our results. The results
also demonstrate that SPU-PMD can simultaneously main-
tain complex structures and generate high-quality upsam-
pling point clouds.

Figure 13. Visualization of surface reconstruction. The results
demonstrate that the point clouds upsampled by SPU-PMD are
smooth and clean.



Figure 14. Visualization of mesh node motion.

Figure 15. Visualization on ScanNet. Our model can adapt to the point clouds with varying sparsity and uniformity via adjusting the query
radius in mesh construction.

6.4. Mesh deformation analysis

In Fig. 11, we show the detailed deformations for diverse
objects to reveal the model’s working process. Deforma-

tion A primarily concentrates on meshing a denser outcome,
whereas deformation B tends to compensate for the incom-
plete structure generated in the previous deformation. Com-



Figure 16. Qualitative evaluation of robustness. The results illus-
trate that our framework is robust under different noise intensities.

bining these two steps allows the model to recover dense
and uniform point clouds. Also, we provide more node mo-
tion processes to demonstrate the implementation basis of
mesh deformation in Fig. 14.

6.5. Robustness evaluation

In this study, we discuss the robustness of SPU-PMD. First,
we randomly add noise to the input point cloud, which con-
forms to the Gaussian distribution N(0, σ2), where σ rep-
resents the standard deviation. By adjusting the value of σ,
we control the noise intensity. In practice, we set σ from
0% to 2%. As shown in Fig. 17, only HD grows obviously
with the increasing noise intensity in the two selected ob-
jects. Other metrics do not increase rapidly, which proves
the robustness of SPU-PMD. The corresponding visual re-
sults in Fig. 16 also demonstrate that our model is robust to
varying noise.

6.6. Evaluation on ScanNet Dataset

Apart from synthetic and KITTI data, we evaluate our
model on the real scanning point clouds with non-uniform
distributions from ScanNet [3] dataset and present the re-
sults produced by using a larger query radius, as shown
in Fig. 15. Specifically, we set the small query ra-

Figure 17. Quantitative evaluation of robustness. We test the ro-
bustness of SPU-PMD with the inputs corrupted by random Gaus-
sian noise.

dius Qs to [r, 1.3r], and the large query radius Ql to
[r, 1.3r, 2r, 2.5r, 3r], where r represents the average radius
of the nearest neighbor. These results demonstrate the flex-
ibility of our model to the point clouds with varying spar-
sity and uniformity. Adjusting the query radius allows SPU-
PMD to handle the point clouds with diverse distributions.
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