
Seeing Motion at Nighttime with an Event Camera

Supplementary Material

Summary
The supplementary material is organized as follows.

• Section 1 introduces the implementation of NER-Net and
experimental settings.

• Section 2 discusses more ablation studies of the proposed
method.

• Section 3 shows more visualization results on real night-
time dynamic scene datasets.

1. Implementation Details
1.1. Non-uniform Illumination Aware Module

We design Non-uniform Illumination Aware Module
(NIAM) encoders comprising Global Context Block (GCB),
Local Adaptation Gate (LAG), and Spatiotemporal Aggre-
gation Unit (SAU) modules. The equations of NIAM are
shown as follows

Xt = GCB(xt)

gt = tanh(Wxg ∗ Xt +Whg ∗ Hl
t−1 + bg)

it = σ(Wxi ∗ Xt +Whi ∗ Hl
t−1 + bi)

ft = σ(Wxf ∗ Xt +Whf ∗ Hl
t−1 + bf )

fLAG
t = σ(ft − αit)

Cl
t = fLAG

t ⊙ Cl−1
t + it ⊙ gt

gt
′ = tanh(W ′

xg ∗ Xt +Wmg ∗Ml−1
t + b′g)

it
′ = σ(W ′

xi ∗ Xt +Wmi ∗Ml−1
t + b′i)

ft
′ = σ(W ′

xf ∗ Xt +Wmf ∗Ml−1
t + b′f )

Ml
t = f ′

t ⊙Ml−1
t + i′t ⊙ g′t

ot = σ(Wxo ∗ Xt +Who ∗ Hl
t−1 +Wco ∗ Cl

t +Wmo ∗Ml
t + bo)

Hl
t = ot ⊙ tanh(W1×1 ∗ [Cl

t,Ml
t]),

(1)

where Cl
t is the temporal cell including GAB and LAG, which

is updated repeatedly over time. Ml
t is the spatiotemporal

memory that can aggregate hierarchical features across lay-
ers, and it also transmits the spatiotemporal memory from
the top layer at time t− 1 with rich semantic information to
the bottom layer at time t through a progressive upsampling.
In addition to the temporal memory Cl

t, the spatiotemporal
memory unit Ml

t can integrate and transmit information
across layers.

1.2. Event Trail Suppression

The details of the proposed event trail suppression (ETS)
method is in Algorithm 1. The input of ETS is a set of events
(x, y, t, p), and the output of ETS is a set of calibration events
(x, y, t′, p). Note that, ETS solely corrects the timestamps
of events. Ti is the timestamps set of input events, Pi is the

Algorithm 1 Event Trail Suppression
1: for each pixel (xi, yi) do
2: Ti = [t0i , t

1
i , ..., t

n
i ]

3: Pi = [p0i , p
1
i , ..., p

n
i ]

4: for j = 1, 2, ..., n do
5: Condition A: pni = pn−1

i

6: Condition B: tni − tn−1
i > tn−1

i − tn−2
i

7: Condition C: tni − tn−1
i < thr

8: if A is True and B is True and C is True then
9: tni = tfirsti + tinterval

10: end if
11: update eventxn

i , y
n
i , t

′n
i , pni

12: end for
13: end for

polarities set of input events, tfirsti is the timestamp of the
first event. We empirically set thr = 1s, and tinterval =
1µs. The ablation study of ETS hyper-parameters is shown
in Table 1.

1.3. Datasets Details

• RLED. We uniformly selected 100 image sequences from
the RLED dataset for training and 23 image sequences for
testing, with each sequence containing 99 images. The opti-
cal flow between two frames is estimated using Flow-former
[4] and utilized to compute the temporal consistency loss.
• DSEC-night. DSEC [2] is a large-scale real-world
dataset, including adverse conditions such as fast-moving
objects and precarious illumination from daytime to night-
time. The event sensor is Prophesee Gen3.1 (640*480). We
choose 4 nighttime sequences of DESC (zurich city 09 b,
zurich city 09 c, zurich city 09 d, zurich city 09 e) to com-
pose a test set namely DSEC-night, containing 3762 images.
And then we align events and images based on the camera
calibration parameters provided by the authors.
• MVSEC-night. MVSEC [12] is a real-world dataset for
3D perception, and the paired data of events and images
was provided by a DAVIS346 (346*260) camera. We ex-
tract the nighttime driving data (outdoor night1) for testing,
comprising 2472 images.
• VECtor-hdr. VECtor [1] is a versatile event-centric bench-
mark for multi-sensor Simultaneous Localization And Map-
ping (SLAM). The event stereo cameras have VGA resolu-
tion (Prophesee Gen3, 640*480) with a horizontal baseline
of about 17 cm. We selected two scenes with challenging
lighting conditions (hdr-normal and hdr-fast) for testing.



(a) Temporal distritbution of events

E
v

en
ts

 n
u

m
b

er

Time/s

OFF

ON

0.00 0.25 0.50 0.75 1.00 1.25 1.50

1

0

2

3

4

5

6

7

8
1e6

T
u

rn
 o

ff
 t

h
e 

li
g

h
t 

at
 t

 =
 0

  The time intervals between 

events are gradually increasing

T=0.1s T=0.2s T=0.4s T=0.5s

T=0.6s T=0.7s T=0.8s T=0.9s

(b) Visualizing events across different time intervals

Figure 1. Trailing events statistical characteristics. (a) represents the statistical histogram of events and (b) represents the visualization of
events across different time intervals. It can be observed that the change rate of OFF events gradually decreases after the lights are turned off.

2. Ablation Study and Discussion

2.1. Trailing Events Statistical Characteristics

To verify the temporal distribution characteristics of trail-
ing events, we design a flashlight experiment. We place a
lamp and an event camera inside a dark chamber, with the
lamp continuously on. Subsequently, we turn off the lamp
and record the distribution of events. The statistical char-
acteristic of events is shown in Fig. 1. The time intervals
between events are gradually increasing after an excitation,
this phenomenon aligns with our assumption regarding the
characteristics of trailing events and motivates us to design
the ETS algorithm.

2.2. Sensitivity of ETS hyper-parameters

We study the sensitivity of ETS hyper-parameters in Table.
1. First, we fix tinterval = 1µs, the thr are set at 0.1s,
0.5s, and 1s, respectively. The results are approximately
equal when thr = 1s and thr = 0.5s, whereas there is a
significant decrease when thr = 0.1s. The reason is that
the length of trailing events is typically greater than 0.1s,
hence, excessively low thresholds prematurely terminate
the trail suppression process. Then, we fix thr = 1s, the
tinterval are set at 1µs, 5µs and 10µs. It’s noticeable that as
tinterval increases, there’s a slight decline in the quality of
reconstruction. Thus, we set thr = 1s and tinterval = 1µs.

2.3. Effect of the Temporal Loss

Table 2 compares the results between w/ and w/o temporal
consistency loss. By employing TC loss, the NER-Net can
better preserve the continuity of information, consequently
enhancing the reconstruction performance.

2.4. Generalizability during Daytime

We capture 22 sequences using the same system without
an ND filter namely real daytime event dataset (RDED), and

Paramters RLED

MSE ↓ SSIM ↑ LPIPS ↓

thr
0.1s 0.018 0.710 0.364
0.5s 0.012 0.715 0.309
1s 0.011 0.717 0.309

tinterval

1µs 0.011 0.717 0.309
5µs 0.012 0.717 0.311

10µs 0.015 0.714 0.313

Table 1. Ablation studies of ETS hyper-paramters.

MSE ↓ SSIM ↑ LPIPS ↓

w/o temporal loss 0.012 0.713 0.312
w/ temporal loss 0.011 0.717 0.309

Table 2. Effect of the Temporal Loss.

created training sets in three ways: (1) normal-light data
only; (2) low-light data only; (3) both datasets mixed in a
1:1 ratio. As shown in Table 3, both training and testing on
the same data have better results. The divergence in data
distribution between training and testing sets may lead to a
reduction in reconstruction quality. Combining training on
two types of data can alleviate this situation.

Fig. 2 illustrates the generalization in daytime scenarios
of the proposed method. Table 4 reports the quantitative re-
sults. Besides, the NER-Net trained by RDED can generate
natural results on other unseen daytime datasets, including
DSEC [2], MVSEC [12], IJRR [6], and HQF [7]. This indi-
cates that training the model with real-world data can lead
to better generalization. The suboptimal performance of
NER-Net on the IJRR data is attributed to the significant res-
olution gap between its training set and the IJRR (1280*720
vs 240*180).

2.5. The Improvement to Hybrid Methods

The proposed method also can enhance the effectiveness
of hybrid methods in nighttime imaging. NeurImg-HDR
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Figure 2. Generalization in real daytime datasets. The proposed method demonstrates strong generalization capabilities in daytime scenarios,
delivering excellent reconstruction performance on unseen datasets.

Training
data

Normal-light Low-light

MSE ↓ SSIM ↑ LPIPS ↓ MSE ↓ SSIM ↑ LPIPS ↓

Normal 0.008 0.724 0.301 0.065 0.387 0.541
Low 0.071 0.427 0.526 0.012 0.711 0.315

Normal+Low 0.010 0.713 0.312 0.014 0.703 0.323

Table 3. Quantitative results on the daytime and nighttime data.

Methods IJRR DSEC RDED

MSE ↓ SSIM ↑ LPIPS ↓ MSE ↓ SSIM ↑ LPIPS ↓ MSE ↓ SSIM ↑ LPIPS ↓

E2VID+ 0.065 0.566 0.343 0.080 0.308 0.606 0.082 0.435 0.518
ET-Net 0.050 0.592 0.345 0.084 0.266 0.625 0.081 0.426 0.545

DVS-Dark 0.087 0.354 0.424 0.108 0.184 0.694 0.071 0.372 0.562
NER-Net(ours) 0.068 0.589 0.348 0.070 0.337 0.589 0.018 0.727 0.309

Table 4. Quantitative results on daytime datasets.

[3] is a SOTA HDR imaging method that fuses events and
images. We replace the intensity map reconstruction module
in NeurImg-HDR from pre-trained E2VID to pre-trained
NER-Net and test it on the DSEC-night and MVSEC-night
datasets without any fine-tuning. The quantitative and quali-
tative results are illustrated in Table 5 and Fig. 4. It can be
observed that NER-Net effectively reduces reconstruction
artifacts and improves image quality.

2.6. Limitation

Imaging in extremely dark motion scenes (e.g. <0.5 lux)
remains challenging. On one hand, the brightness variations
within the scene may fall below the event camera’s triggering

Method LOE ↓ NIQE ↓ SPAQ ↑

with E2VID 126.02 17.12 7310.06
with NER-Net 125.82 17.07 11213.68

Table 5. The improvement to hybrid methods.

Input size Parameters (M) Memory (MB) Flops (GFlops) Time(ms)

346 * 260 19.36 2066 83.16 10.35
560 * 400 19.36 2492 200.52 13.50

1120 * 660 19.36 4152 672.24 41.82

Table 6. Computational performance.

(a) Event frames (b) Reconstruction results

0.2 lux

Figure 3. Limitation of the proposed method. The event camera
failed to capture scene texture details under extremely low-light con-
ditions (about 0.2 lux), resulting in distortion in the reconstructed
scene intensity.

threshold, leading to the loss of fine texture details. On the
other hand, the event camera experiences a sharp decline
in signal-to-noise ratio, making it difficult to reconstruct
reasonable scene intensities, as shown in Fig. 3.
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Figure 4. NeurImg-HDR reconstruction results. Replacing E2VID with NER-Net significantly improves the quality of images.

2.7. Computational Performance

We using an NVIDIA A100 GPU for all experiments.
Table 6 shows the details of computational performance on
NER-Net on RLED (1120 * 660), DSEC (560 * 400), and
MVSEC (346 * 260) datasets respectively.

3. Additional Results
3.1. Comparison with image enhancement methods

We compared the proposed NER-Net with three state-of-
the-art low-light enhancement methods (KinD++ [11], SCI
[5], and URetinex-Net [9]) across various light levels and

different motion speeds. We carefully set exposure times
based on object motion speeds to prevent motion blur in
images. The lens aperture for both the event camera and
frame camera is set to F2.0. To maintain visual consistency,
we convert the enhanced results into grayscale images. Note
that, due to the non-uniformity of artificial light at night,
we employ an illuminance meter to measure the average
illuminance in the imaging system. The illumination values
may vary across different regions within the field of view.
When capturing moderately paced moving objects at 20.0 lux
(such as throwing a ball), we set the exposure time to 10ms,
and the low-light enhancement methods work effectively, as
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Figure 5. Qualitative results on challenging nighttime dynamic scenes. (a) Throwing a ball, exposure time = 10 ms, scene illumination =
20.0 lux, low ISO. (b) Throwing a ball, exposure time = 10 ms, scene illumination = 10.4 lux, low ISO. (c) Riding, exposure time = 10 ms,
scene illumination = 6.7 lux, high ISO. (d) Fast riding, exposure time = 5 ms, scene illumination = 6.7 lux, low ISO.

shown in Fig. 5(a). In Fig. 5(b), the staircase on the left side
of the image is further away from the light source and the
enhanced image still fails to recover the scene information.
In Fig. 5(c), we refrain from adjusting the exposure time
and capture images from a greater distance from the imaging
device to prevent motion blur. We increase the ISO of the
camera to accommodate darker scenes (6.7 lux), however,
the enhanced image appears noisy. Fig. 5(d) depicts a more
challenging scenario with fast-moving objects, hence, we
reduce the exposure time to 5ms. When ambient light di-
minishes and object motion speeds increase, the efficacy of
low-light enhancement significantly diminishes. The exces-
sively short exposure time hinders the frame-based camera
from capturing adequate scene information, making recovery

challenging even with enhancement methods. The proposed
NER-Net sustains better imaging quality across varying light
levels and different motion speeds and maintains good ro-
bustness across the aforementioned scenarios.

3.2. Comparison with event reconstruction methods

Additional qualitative results on RLED and DSEC [2]
datasets are shown in Fig. 6. E2VID+ [7] and ET-Net [8]
suffer from severe artifacts due to the substantial gap be-
tween the simulated and real-world data distributions. DVS-
Dark [10] also fails to reconstruct natural images in night-
time dynamic scenes. NER-Net outperforms state-of-the-art
methods in terms of visual quality and generalization ability
on real-world nighttime datasets.
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Figure 6. Qualitative results on real-world datasets. Other state-of-the-art methods fail to adapt to the distribution of nighttime events,
resulting in severe reconstruction artifacts. NER-Net can reconstruct natural HDR images and still demonstrates strong generalization on
unseen real-world nighttime datasets.
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