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7. Proof

7.1. Connection between SCVRM and VRM

We first re-state Example 1 defined in Sec. 4.2, where we
analyse the relationship between VRM and our proposed
SCVRM in a simplified setting. Specifically, we consider
the case of binary classification tasks, where our RSC−G(f)
in Eq. (7) adopts the logistic regression model and the bi-
nary cross entropy loss. In this setting, we prove that if
g(yi, σ

√
d) is a label smoothing function, RSC−G(f) can

be written as a combination of two terms, a VRM term and
a regularization term that penalizes overconfident predic-
tions.

Example. In RSC−G(f) defined in Eq. (7), suppose:

• Data: {(xi, yi)}Ni=1 with xi ∈ Rd and yi ∈ {0, 1},
• Model: f(x) = 1/(1 + e−wT x) with w ∈ Rd,
• Loss: ℓ(f(x), y) = −y log f(x)− (1− y) log(1− f(x)),
• g(y, σ

√
d) = (1− 2σ)y+σ, σ ∼ U(0, γ] and γ ∈ (0, 1

2 ].

then we have:

RSC−G(f) =

∫ γ

0

1

γ
RV−G(f ;σ)dσ + τ(f), (15)

where

τ(f) =
γ

2N

N∑
i=1

(2yi − 1) · wTxi, (16)

and the first term of RHS in Eq. (15) is equivalent to intro-
ducing our design of σ ∼ U(0, γ] into RV−G(f ;σ) which
is the VRM with Gaussian kernel defined in Eq. (4).

Note that in binary case we have yi ∈ {0, 1}, therefore
in the term τ(f) in Eq. (15) we have:

(2yi − 1) · wTxi =

{
wTxi, yi = 1,

−wTxi, yi = 0.
(17)

The proof of Example. 1 is:

Proof. Substituting each term into the definition of the pro-
posed risk defined in Eq. (7), for a given σ ∈ (0, 1

2 ] we have:

RSC−G(f ;σ)

=
1

N

N∑
i=1

∫
ℓ(f(xi + ϵ), g(yi;σ)) · p(ϵ)dϵ

=
1

N

N∑
i=1

∫
p(ϵ) ·

(
− g(yi, σ) · log(f(xi + ϵ))

− (1− g(yi, σ)) · log(1− f(xi + ϵ))
)
dϵ

=
1

N

N∑
i=1

∫
p(ϵ) ·

(
log

(
1 + e−wT (xi+ϵ)

)
+

(1− (1− 2σ)yi − σ) · wT (xi + ϵ)

)
dϵ

=
1

N

N∑
i=1

∫
N (ϵ− 0;σ2) ·

(
log

(
1 + e−wT (xi+ϵ)

)
+

(1− yi) · wT (xi + ϵ)

)
dϵ

+
1

N

N∑
i=1

∫
N (ϵ− 0;σ2) · σ · (2yi − 1) · wT (xi + ϵ)dϵ

(18)
Note that if we only augment the image, i.e. VRM ap-

proach, with ϵ ∼ N (0, σ2) for some fixed σ, then we have:

RV−G(f ;σ)

=
1

N

N∑
i=1

∫
p(ϵ) · ℓ(f(xi + ϵ), yi)dϵ

=
1

N

N∑
i=1

∫
N (ϵ− 0;σ2) ·

(
log

(
1 + e−wT (x+ϵ)

)
+ (1− yi) · wT (xi + ϵ)

)
dϵ

(19)

Substituting Eq. (19) into Eq. (18) we have:

RSC−G(f ;σ) =RV−G(f ;σ) + τ(f ;σ), (20)

where:

τ(f ;σ)

=
1

N

N∑
i=1

∫
N (ϵ− 0;σ2) · σ · (2yi − 1) · wT (xi + ϵ)dϵ

=
1

N

N∑
i=1

σ · (2yi − 1) · wTxi.

(21)



When σ ∼ U(0, γ] follows a uniform distribution, the
overall RSC(f) can then be written as:

RSC−G(f) = E
σ∼U(0,γ]

[RSC−G(f ;σ)]

=

∫
RSC−G(f ;σ)p(σ)dσ

=

∫ γ

0

1

γ
RV−G(f ;σ)dσ

+

∫ γ

0

1

γ

1

N

N∑
i=1

σ · (2yi − 1) · wTxidσ

=

∫ γ

0

1

γ
RV−G(f ;σ)dσ +

γ

2N

N∑
i=1

(2yi − 1) · wTxi

=

∫ γ

0

1

γ
RV−G(f ;σ)dσ + τ(f)

(22)

8. Implementations
8.1. Additive Gaussian Noise ϵ

We experimentally verify that our approximation of L2 dis-
tance between the vicinal and labeled images (equivalently
the L2 norm of additive Gaussian noise: ∥x̃−x∥2 = ∥ϵ∥2),
by σ

√
d ≈ ∥ϵ∥2 is valid. We compare with the following

two settings: (1) “Exact” φG(∥ϵ∥2, η): the L2-distance of
the Gaussian equation (Eq. (9) of Main Paper) is exact; and
(2) “Calibrated”: the L2 norm of additive Gaussian noise is
calibrated at the cost of additional computation of its norm
ϵ∗ = (ϵ/∥ϵ∥2) · σ

√
d, ϵ ∼ N (0, σ2Id) so that ϵ∗ is dis-

tributed exactly on a hypersphere centring the labeled im-
age x with a radius of σ

√
d. Tab. 4 compares the calibra-

tion and classification results of these two settings (“Exact”
and “Calibrated”) with our SCVRM with approximated L2-
distance σ

√
d ≈ ∥ϵ∥2. It shows that approximating the

L2-distance produces results that are equivalent to those by
computing the exact distance, or calibrating the L2-norm of
additive Gaussian noise

8.2. Radial Basis Function - Additional Options

We investigate additional RBF functions, termed as (i) “Lo-
gistic” (Eq. (23)); (ii) “Hyperbolic” (Eq. (24)); and (iii)
“Linear” (Eq. (25)), which are defined as:

φLog(σ
√
d, η) =

2

1 + exp−(σ
√
d/η)

− 1. (23)

φH(σ
√
d, η) =

exp(σ
√
d/η) − exp−(σ

√
d/η)

exp(σ
√
d/η) +exp−(σ

√
d/η)

. (24)

φLin(σ
√
d) =

σ
√
d

γη
, (25)

where γ is the upper bound of the uniform distribution fol-
lowed by the standard deviation σ ∼ U [0, γ).

Both of “Logistic” function and “Hyperbolic” function
differ from the “Gaussian” function (Eq. 9 of Main Paper)
only in terms of the sensitivity to the change of σ value,
while having the same support [0,∞) and the same range
[1, 0). The “Linear” function is more different from the rest
of the investigated options as it has a narrower support of
[0, γη] and a slightly different range of [1, 0]. Intuitively,
“Linear” function sets a hard boundary condition where the
label is smoothed to exactly a uniform categorical distribu-
tion, instead of being infinitely close to.

Following the default hyperparameter settings of η =√
d, γ = 2.0 and M = 3 and default training details

specified in Sec. 5.1, we show in Tab. 5 that these RBFs
can achieve competitive performances against the Gaussian
RBF in terms of both the model calibration degree and the
dense classification accuracy.

8.3. Vicinal Risk Minimisation - Implementation
Details

In practical implementation, the intractable VRM defined
in Eq. 4 is approximated with the Monte-Carlo (MC) Sam-
pling. Similar to the practical model of SCVRM (Sec. 4.3),
VRM is also formulated as a data augmentation technique
based on the labeled dataset D = {(x1, yi)}Ni=1. Its aug-
mented dataset can be defined as:

Dv =

N⋃
i=1

{
(x̃j

i , ỹ
j
i )

∣∣ x̃j
i = xi + ϵji , ỹ

j
i = yi,

ϵji ∼i.i.d N (0, σ2Id)
}M

j=1
,

(26)

where σ is a fixed hyperparameter, and the vicinal images
are paired with the groundtruth labels. This implementa-
tion, where we empirically set σ = 2.0, is termed as VRM.

We provide a different version of VRM with Gaussian
kernel by introducing our design of letting the standard de-
viation be a random variable following a uniform distribu-
tion σ ∼ U(0, γ]. The corresponding augmented dataset
can then be defined as:

Dv∗ =

N⋃
i=1

{
(x̃j

i , ỹ
j
i )

∣∣ x̃j
i = xi + ϵji , σi,j ∼i.i.d U(0, γ],

ỹji = yi, ϵ
j
i ∼i.i.d N (0, σ2

i,jId)
}M

j=1
.

(27)
Empirically, we set σ = 2.0 following the default hyperpa-
rameter setting of our SCVRM as in Sec. 5.1, and term this
implementation as VRM∗.

Following the default setting of η =
√
d and M = 3

and training details specified in Sec. 5.1, these models are
trained on both the labeled and the augmented datasets with



Table 4. Ablation study on approximating the L2-distance between the vicinal and labeled images with σ
√
d ≈ ∥ϵ∥2.

L2 distance DUTS-TE [61] DUT-OMRON [73] PASCAL-S [32] SOD [43] ECSSD [71] HKU-IS [30]

ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓

Exact 0.85 0.60 1.56 1.41 1.92 1.777 4.68 4.30 0.42 0.18 0.96 0.10
Calibrated 0.88 0.72 1.88 1.73 2.10 1.92 4.47 4.21 0.36 0.31 0.78 0.12
Approximated (SCVRM) 0.78 0.61 1.64 1.49 1.91 1.75 3.90 3.60 0.44 0.19 0.78 0.10

L2 distance Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑

Exact 0.871 0.930 0.777 0.872 0.861 0.906 0.843 0.872 0.938 0.957 0.930 0.961
Calibrated 0.872 0.930 0.780 0.874 0.862 0.904 0.842 0.871 0.940 0.958 0.930 0.960
Approximated (SCVRM) 0.872 0.932 0.786 0.880 0.861 0.904 0.845 0.869 0.940 0.956 0.929 0.961

Table 5. Ablation study on the effect of various RBF functions.

Methods Modules DUTS-TE [61] DUT-OMRON [73] PASCAL-S [32] SOD [43] ECSSD [71] HKU-IS [30]

SCVRM RBF ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓

Baseline (B) - - 3.05 2.89 3.80 3.68 4.14 3.98 7.07 6.85 1.82 1.76 1.38 1.34

SCVRM

✓ Gaussian (φG) 0.78 0.61 1.64 1.49 1.91 1.75 3.90 3.60 0.44 0.19 0.78 0.10
✓ Logistic (φLog) 0.80 0.53 1.47 1.33 1.50 1.35 4.46 4.15 0.70 0.17 1.17 0.07
✓ Hyperbolic (φH ) 0.83 0.51 1.48 1.34 2.19 2.03 4.60 4.32 0.67 0.61 0.58 0.09
✓ Linear (φLin) 0.92 0.70 1.86 0.90 1.40 1.29 4.73 4.47 0.74 0.17 1.34 0.02

a Binary Cross Entropy loss as defined in Eq. (14) (Main
Paper). Following the implementation of SCVRM, the aug-
mented dataset is re-sampled after each training epoch.

8.4. Example Vicinal Data Under Different Hyper-
parameters γ and η.

The hyperparameter γ sets the upper-bound of the uniform
distribution σ ∼ U(0, γ] followed by the standard deviation
of the isotropic Gaussian distribution N (0, σ2Id). Given
the bubbling effect of additive Gaussian noise [42, 66], γ ef-
fectively controls the radius of vicinity space centring each
labeled image. Equivalently, it determines the noisiness of
the vicinal images x̃ = x+ ϵ, ϵ ∼ N (0, σ2Id) as illustrated
in Fig. 7, which also shows their assigned soft labels com-
puted via the Gaussian function (Eq. (9) with ∥ϵ̃∥2 = σ

√
d)

under various η values. We also plot the soft label value
w.r.t the L2-distance between the vicinal and labeled images
(∥ϵ∥2 ≈ ∥ϵ̃∥2 = σ

√
d) under various η values in Fig. 6.

8.5. Training and Inference Time

Both training and inference of SCVRM are conducted with
a single RTX 3090 GPU. The training time increases pro-
portionally with the number of augmented samples per la-
beled image M . With the default setting of M = 3, the
training costs approximately 9.2 hours. The inference time
is independent of the number of samples M , and averages
53.48 images per second. Despite the training time scal-
ing with the number of sampling of augmented data M , the
inference speed remains unchanged. VRM [3, 59], with
a similar implementation (Supp. 8.3) to that of SCVRM
(Sec. 4.3), has the same training and inference time. Base-
line model (ERM) trained only on the labeled dataset has a
shorter training time of 2.3 hours, but its inference speed is
the same as that of SCVRM.

Figure 6. Plot of soft label with increasing σ values, computed
with the Gaussian function (Eq. (9) with ∥ϵ̃∥2 = σ

√
d) under

various η values. The starting points of 1 and 0 (hard label) at
σ = 0 correspond to the foreground and background categories in
a (dense) binary classification task.

9. Evaluation Metrics
9.1. Model Calibration

Equal-Width Expected Calibration Error (ECEEW) [16]
can be defined as:

ECEEW =

B∑
k=1

Nk

N
|Ck −Ak|, (28)

where | · | computes the absolute value, N is the total num-
ber of samples, B is the total number of bins where predic-
tions are sorted into based on their confidences, Nk is the



Figure 7. Example noisy images sampled under various standard deviations σ = {0.01, 0.05, 0.1, 0.25, 0.5, 1.0, 2.0, 5.0} and their corre-
sponding labels computed with the Gaussian function φG(·, ·) of different η = {i

√
d|i = 0.1, 0.5, 1.0, 2.0, 5.0, 10.0}.

number of predictions sorted into the kth bin, Ck computes
the mean confidence of predictions sorted into the kth bin:
Ck = 1

Nk

∑N
i=1 1(c(ω(xi)) ∈ [ kB , k+1

B )) · c(ω(xi)), ∀k =

1, . . . , B, with [ kB , k+1
B ) being the range of the kth bin,

Ak computes the mean accuracy of predictions of the kth

bin: Ak = 1
Nk

∑N
i=1 1(c(ω(xi)) ∈ [ kB , k+1

B )) · 1(f(xi) =

yi), ∀k = 1, . . . , B, ω(x) ∈ (0, 1) is the Sigmoid-activated
value before the classification f(x) = 1(ω(x) > 0.5), and
f(·) : X → Y is the projection function learned by a DNN.

Over-confidence Error (OE) can be defined as

OE =

B∑
k=1

Ni

N
1(Ck > Ak) · |Ck −Ak|. (29)

By choosing different constraints of respective ECE met-
rics, it can be transformed into Equal-Width Over-
confidence Error OEEW, Equal-Mass Over-confidence Er-
ror OEEM and DEBIAS Over-confidence Error OEDEBIAS
respectively.

9.2. Dense Classification

Prediction Accuracy A(·) of the model fθ(·) on a finite
dataset D = {(xi, yi)}Ni=1 can be defined as:

A(θ,D) =
1

N ×H ×W

N∑
i=1

H∑
h=1

W∑
w=1

1(f(xi)
h,W = yh,Wi ),

(30)
where i is the sample index, and h and w represent the spa-
tial indices.

F-measure can be defined as:

Fξ =
(1 + ξ2)× Precision × Recall

ξ2 × Precision + Recall
. (31)

We follow previous SOD methods [37, 38, 68, 82] to adopt
ξ2 = 3. Further, the maximum F-measure result Fmax
is obtained via iterating over a set of binary thresholds of
{0.01t | t = 1, . . . , 99}, with the resultant classification be-
ing f(x) = 1(ω(x) > t).

Enhancement-alignment measure (E-measure) [11] is



Table 6. Impact of SCVRM on the dense classification accuracy.

Method
DUTS-TE [61] DUT-OMRON [73] PASCAL-S [32] SOD [43] ECSSD [71] HKU-IS [30]

Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑

ERM 0.869 0.928 0.769 0.867 0.855 0.902 0.836 0.871 0.936 0.956 0.925 0.958
VRM 1 0.864 0.924 0.778 0.873 0.858 0.902 0.838 0.866 0.936 0.955 0.925 0.958
VRM∗1 0.871 0.930 0.777 0.872 0.861 0.906 0.843 0.872 0.938 0.957 0.930 0.961

SCVRM 0.872 0.932 0.786 0.880 0.861 0.904 0.845 0.869 0.940 0.956 0.929 0.961
1 VRM has fixed variance in accordance to the definition in Eq. (4).
2 VRM∗ incorporates our design of σ ∼ U(0, γ].

Table 7. Model calibration and dense classification performances of VGG16 and Swin transformer backbones evaluated in terms of ECEEW

(%) and OEEW (%) using B = 10 bins, and maximum F-measure and maximum E-measure respectively.

Methods DUTS-TE [61] DUT-OMRON [73] PASCAL-S [32] SOD [43] ECSSD [71] HKU-IS [30]

ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓

Baseline (“VGG-B”) 3.46 3.23 4.12 3.92 4.40 4.17 7.87 7.60 2.02 1.91 1.51 1.44
Baseline (“Swin-B”) 2.41 2.23 3.29 3.15 3.35 3.19 6.23 6.05 1.02 0.97 0.87 0.82

VGG-SCVRM 0.90 0.71 1.78 1.76 2.02 1.78 4.54 4.02 0.49 0.25 0.85 0.14
Swin-SCVRM 0.91 0.78 1.49 1.32 1.54 1.40 3.83 3.63 0.54 0.29 0.75 0.10

Methods DUTS-TE [61] DUT-OMRON [73] PASCAL-S [32] SOD [43] ECSSD [71] HKU-IS [30]

Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑

Baseline (“VGG-B”) 3.46 3.23 4.12 3.92 4.40 4.17 7.87 7.60 2.02 1.91 1.51 1.44
Baseline (“Swin-B”) 0.894 0.949 0.804 0.890 0.877 0.920 0.858 0.878 0.948 0.969 0.939 0.969

VGG-SCVRM 0.90 0.71 1.78 1.76 2.02 1.78 4.54 4.02 0.49 0.25 0.85 0.14
Swin-SCVRM 0.898 0.954 0.811 0.896 0.880 0.922 0.861 0.883 0.948 0.970 0.942 0.971

defined as:

E =
1

N ×H ×W

N∑
i=1

H∑
i=1

W∑
j=1

ϕ(ω(xi))
h,w, where

ϕ(ω(x)) =
1

4

(
1 +

2 · φ(y) ◦ φ(ω(x))
φ(y) ◦ φ(y) + φ(ω(x)) ◦ φ(ω(x))

)2

,

and φ(z) = z − µz · JH,W ,
(32)

where H and W indicate the resolution of the groundtruth
or dense classification map, JH,W is an H-by-W all-one ma-
trix, µz stands for the mean value of the groundtruth or the
dense classification map. The maximum E-measure result
Emax is obtained via iterating over a set of binary thresholds
that replace the mean value µz ∈ {0.01t | t = 1, . . . , 99}

10. More Ablation Studies
10.1. Effect of SCVRM on Classification Accuracy

Our proposed SCVRM not only improves the model cal-
ibration degree, but also the dense classification accuracy
as shown in Tab. 6. It shows that our SCVRM outper-
forms ERM in terms of the maximum F-measure across the
six SOD testing datasets, with the largest improvement of
0.017 on the DUT-OMRON dataset [73]. On the other hand,
VRM with a fixed variance achieves little improvement over
ERM. After introducing our design of σ ∼ U(0, γ], VRM∗

achieves consistent improvements over the baseline (ERM)
and performs comparably to our SCVRM.

11. Experiments with Different Backbones

Extra experiments with VGG16 [55] and Swin [39] trans-
former as backbones are conducted with default setting of:
(i) γ = 2.0, (ii) η =

√
d and (iii) “Gaussian” function

φG(·, ·) (Eq. 9 of Main Paper), as specified in Sec. 5.1.
Their performances in terms of model calibration degree
and dense classification accuracy are presented in Tab. 7.

12. Experiments on Additional Dense Classifi-
cation Tasks

12.1. Camouflaged Object Detection

The Camouflaged Object Detection (COD) model is trained
on the COD10K training dataset [12], and evaluated on
four testing datasets, including COD10K [12], NC4K [40],
CHAMELEON [57] and CAMO [28]. The hyperparame-
ters and training details adopt the default setting as spec-
ified in Sec. 5.1. The model calibration and dense classi-
fication performances of baseline and SCVRM models are
presented in Tab. 8.

12.2. Smoke Detection

The Smoke Detection (SD) model is trained on the
SMOKE5K [72] training set, and evaluated on the
SMOKE5K testing dataset. The hyperparameters and
training details adopt the default setting as specified in
Sec. 5.1. The model calibration and dense classification per-



Table 8. Model calibration and dense classification performances of baseline and our SCVRM models in the camouflaged object detection
task evaluated in terms of ECEEW (%) and OEEW (%) using B = 10 bins and maximum F-measure and maximum E-measure respectively.

Methods
COD10K [12] NC4K [40] CHAMELEON [57] CAMO [28]

ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓

Baseline (“COD-B”) 1.65 1.55 2.75 2.60 0.63 0.57 3.62 3.46
COD-SCVRM 0.42 0.38 0.62 0.43 0.49 0.07 1.27 1.08

Methods
COD10K [12] NC4K [40] CHAMELEON [57] CAMO [28]

Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑

Baseline (“COD-B”) 0.710 0.882 0.800 0.901 0.837 0.935 0.745 0.851
COD-SCVRM 0.720 0.888 0.805 0.905 0.844 0.936 0.760 0.865

formances of baseline and SCVRM models are presented in
.

Table 9. Model calibration and dense classification performances
of the baseline and our SCVRM models in the smoke detection
task, evaluated in terms of ECEEW (%) and OEEW (%) using B =
10 bins and maximum F-measure and maximum E-measure.

Methods
SMOKE5K [12]

ECEEW ↓ OEEW ↓ Fmax ↑ Emax ↑

Baseline (“SD-B”) 0.180 0.170 0.763 0.930

SD-SCVRM 0.066 0.062 0.772 0.936

13. Experiment on Multi-Class Dense Classifi-
cation Task (Semantic Segmentation)

The experiment on the multi-class dense classification task
(semantic segmentation) is conducted on the PASCAL VOC
2012 segmentation dataset [10]. The dataset is comprised
of a training, validation and testing set of size 1,464, 1,449,
1,456 respectively. Pixels of these images are categorised
into 20 foreground classes and 1 background class. We fol-
low [4, 33] to adopt the augmented training set with 10,582
training samples [17]. Without access to the groundtruth la-
bels of the testing set, which are kept on the server and not
released to the public, we treat the “official validation set”
as “our testing set” to evaluate the model calibration and
dense classification performances. We also divide the “offi-
cial augmented training set” into “our training set” of 9,582
training samples for model optimisation and “our validation
set” of 1,000 validation samples to tune the hyperparame-
ters. The model calibration is evaluated in terms of Equal-
Width Expected Calibration Error ECEEW and Equal-Width
Over-confidence Error OEEW using B = 10 bins. Follow-
ing [4, 33], the dense classification accuracy is evaluated
in terms of Intersection-over-Union (IoU). The training in-
volves a DeepLabv3+ [4] as the baseline and our proposed
SCVRM as data augmentation technique. We set η =

√
d/2

and adopt the default settings for the rest of hyperparame-
ters and training details as specified in Sec. 5.1. The results

are presented in Tab. 10.

Table 10. Model calibration and dense classification performances
of the baseline and our SCVRM models in the semantic segmen-
tation task, evaluated in terms of ECEEW (%) and OEEW (%) using
B = 10 bins and Intersection-over-Union (IoU).

Methods PASCAL VOC 2012 [10]

ECEEW(%) ↓ OEEW(%) ↓ IoU (%) ↑

Baseline (“SS-B”) 6.29 5.37 71.2

SS-SCVRM 3.51 2.97 71.5

14. Generalisation to Existing SOD Methods

We generalise the proposed SCVRM data augmentation
technique to several existing SOD models of different cat-
egories, including: energy-based conditional generative
model, EBMGSOD [79], lightweight model, EDN [68],
and attention-based model ICON [87]. The model calibra-
tion and dense classification performance are presented in
Tab. 11.

14.1. How does soft vicinity work in SCVRM?

Our SCVRM approach intuitively requires that image vicin-
ity implies label vicinity, i.e. for a vicinal image x̃0 ∼i.i.d

p(x̃i|xi), the corresponding ỹ0 is likely to be closer to yi
instead of other labels in the label space. This requirement
can raise extra constraints on practical SCVRM implemen-
tations. We analyse a simpler case of RSC−G(f) defined in
Eq. (7) where the standard deviation σ is a fixed parameter.
We show that such requirement is highly likely to be satis-
fied in practice with a small σ, and setting ∥ϵ̃∥2 = σ

√
d.

Then, for x̃ = xi + ϵ and ỹ = g(yi;σ
√
d) we have:


p(x̃|x, σ) = 1√

(2πσ2)d
exp

(
−||x̃− x||22

2σ2

)
p(ỹ|y, σ) = δg(y;∥ϵ̃∥2)(ỹ)

p(x, y) =
1

N
· δxi,yi

(x, y),

(33)



Table 11. Model calibration performance of our proposed SCVRM applied on the existing SOD methods, evaluated in terms of ECEEW

(%) and OEEW (%) using B = 10 bins.

Methods DUTS-TE [61] DUT-OMRON [73] PASCAL-S [32] SOD [43] ECSSD [71] HKU-IS [30]

Name Year SCVRM ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓ ECE ↓ OE ↓

EBMGSOD [79] 2021 - 3.45 3.29 4.11 3.95 4.79 4.61 7.48 7.30 2.14 2.05 1.79 1.70
ICON [87] 2021 - 2.89 2.76 3.84 3.71 4.08 3.95 6.70 6.55 1.56 1.49 1.38 1.32
EDN [68] 2022 - 3.62 3.47 4.02 3.90 4.89 4.74 8.81 8.66 2.20 2.13 1.65 1.58

EBMGSOD* 2021 ✓ 0.90 0.73 1.55 1.40 2.15 1.89 4.90 4.62 0.55 0.50 1.07 0.14
ICON* 2021 ✓ 0.75 0.51 1.39 1.25 1.89 1.72 4.48 4.19 0.36 0.21 1.17 0.11
EDN* 2022 ✓ 0.85 0.69 1.73 1.56 1.85 1.70 4.47 4.20 0.49 0.15 1.01 0.14

Methods DUTS-TE [61] DUT-OMRON [73] PASCAL-S [32] SOD [43] ECSSD [71] HKU-IS [30]

Name Year SCVRM Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑ Fmax ↑ Emax ↑

EBMGSOD [79] 2021 - 0.850 0.927 0.762 0.867 0.830 0.896 0.836 0.871 0.914 0.944 0.906 0.952
ICON [87] 2021 - 0.860 0.924 0.773 0.876 0.850 0.899 0.815 0.854 0.933 0.954 0.919 0.953
EDN [68] 2022 - 0.893 0.949 0.821 0.900 0.879 0.920 0.840 0.860 0.950 0.969 0.940 0.970

EBMGSOD* 2021 ✓ 0.854 0.930 0.771 0.872 0.833 0.902 0.841 0.873 0.916 0.950 0.909 0.950
ICON* 2021 ✓ 0.863 0.928 0.779 0.881 0.852 0.902 0.823 0.859 0.936 0.957 0.922 0.958
EDN* 2022 ✓ 0.894 0.949 0.829 0.905 0.884 0.925 0.843 0.867 0.952 0.970 0.943 0.971

1 * indicates the model is trained with our proposed SCVRM.

where 1(·) is an indicator function and p(x, y) only consid-
ers the finite available data (xi, yi) ∈ D, and δg(y;∥ϵ̃∥2)(ỹ)
is a delta distribution of ỹ which has non-zero probabil-
ity density only at g(y; ∥ϵ̃∥2). Given Eq. (33), we would
like to analyse p(ỹ|x̃, σ), the conditional distribution of vic-
inal label ỹ given vicinal image x̃ and parameter σ. For
(x̃0, ·) ∼i.i.d p(x̃, ỹ), if we denote


(xm1

0 , ym1
0 ) = argmin

(x,y)∈D
||x− x̃0||2

(xm2
0 , ym2

0 ) = argmin
(x,y)∈D\{(xm1

0 ,ym1
0 )}

||x− x̃0||2,
(34)

Then we present the proposition as:

Proposition 1. Let D = {xi, yi}Ni=1 that satisfies for ∀i ̸=
j we have xi ̸= xj and yi ̸= yj . Then for (x̃0, ·) ∼i.i.d

p(x̃, ỹ), we have:

p(ỹ = ỹm1
0 | x̃0, σ) ≥

1

1 + (N − 1)e−∆
, (35)

where ∆ =
(
∥x̃0 − xm2

0 ∥22 − ∥x̃0 − xm1
0 ∥22

)
/(2σ2) ≥ 0

and ỹm1
0 = g(ym1

0 ; ∥ϵ̃∥2).

The proof for the proposition is:

Proof. Based on Eq. (33), we can rewrite p(ỹ|x̃, σ) as :

p(ỹ0|x̃0, σ) =

∫
x,y

p(ỹ|y, σ) · p(y|x, σ) · p(x|x̃0, σ)dxdy

=

∫
x,y

p(ỹ|y, σ) · p(y|x) · p(x̃0|x, σ)p(x)
p(x̃0)

dxdy

=

N∑
i=1

1(ỹi = g(yi;σ
√
d)) · 1

N
· p(x̃i,0|xi, σ)

p(x̃i,0)
.

(36)

Because ground truth label space Y is a discrete set
and g(·, σ

√
d) is deterministic, the augmented label space

Ỹ (σ) = {g(yi;σ2
√
d)}Ni=1 with (xi, yi) ∈ D is also a dis-

crete set. For ∀ỹi ∈ Ỹ (σ) we have:

p(ỹ0 = ỹ0,i|x̃0, σ) =
p(x̃i,0|xi, σ)

p(x̃i,0) ·N
=

p(x̃i,0|xi, σ)∑N
l=1 p(x̃i,0|xl, σ)

.

(37)

Based on Eq. (37), for ∀ỹ∗ ∈ Ỹ(σ)\{ỹm1
0 }, where

ỹm1
0 = g(ym1

0 ;σ
√
d), and corresponding (x∗, y∗) ∈

D\{(xm1
0 , ym1

0 )} we have:

p(ỹ = ỹ∗|x̃0, σ)

p(ỹ = ỹm1
0 |x̃0, σ)

= exp

(
1

2σ2
(∥x̃0 − xm1

0 ∥22 − ∥x̃0 − x∗∥22)
)

≤ e−∆

(38)



Therefore we have:

p(ỹ = ỹm1|x̃0, σ) =
p(x̃0|xm1, σ)∑N
l=1 p(x̃0|xl, σ)

≥ p(x̃0|xm1, σ)

p(x̃0|xm1, σ) + (N − 1)e−∆ · p(x̃0|xm1, σ)

=
1

1 + (N − 1)e−∆

(39)

Remark 2. The Prop. 1 presents a probabilistic bound
on the vicinal image adopting the groundtruth label of the
nearest labeled image adjusted by the g(·) function defined
in Eq. 5, which is conditioned on the dataset size N , the
standard deviation σ, and the difference in L2-distance from
the vicinal image to the nearest labeled image and the sec-
ond nearest labeled image.

We empirically analyse the probabilistic bound of
Prop. 1 on the training dataset, DUTS-TR [61] with the size
N = |D| = 10, 553 and image space dimension of d = 3×
3842. We sample 100 vicinal images from the vicinal dis-
tribution of each labeled image under various standard de-
viations: σ = {0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0}.
As plotted in Fig. 8, the mean ∆ value is at least 14.74
when the variance is no larger than 5.0, resulting in p(ỹ =
g(ỹm1

0 , σ) | x̃0, σ = 5.0) ≥ 99.6%. Note that vicinal images
sampled under σ2 = 5 are overwhelmed by Gaussian noise,
with their associated augmented labels being smoothed to
approximately uniform categorical distributions as shown
in Fig. 2. In this case, the groundtruth label of the nearest
labeled image becomes almost irrelevant.
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Figure 8. Plot of mean ∆ (left vertical axis) and 1/(1 +
(N + 1) exp(−∆)) (right vertical axis) of Prop. 1 computed
for additive Gaussian noise ϵ ∼ N (0, σ2Id) under σ ∈
{0.01, 0.05, 0.1, 0.5, 1.0, 2.0, 5.0, 10.0}, N = 10, 553 and d =
3× 3842 on the DUTS-TR [61] training dataset.

15. More Joint Distribution Plots on SOD Test-
ing Datasets

Fig. 9 plots the joint distribution of prediction confidence
and accuracy of existing model calibration methods and our
proposed SCVRM on the six SOD testing datasets.



Joint Distribution DensityHigh Low

Ba
se

lin
e 

(E
R

M
)

Br
ie

r L
os

s
Te

m
pe

ra
tu

re
 S

ca
lin

g

DUT-OMRON PASCAL-S SOD ECSSD HKU-ISDUTS-TE

Figure 9. Joint distribution of prediction confidence (horizontal axis) and prediction accuracy (vertical axis) on the six SOD testing datasets.
The dashed red diagonal line represents the perfectly calibrated oracle model. Compared to the existing methods, our proposed SCVRM
further reduces the areas of distribution that deviate from the oracle.



Joint Distribution DensityHigh Low

La
be

l S
m

oo
th

in
g

M
M

C
E

M
ix

up

DUTS-TE DUT-OMRON PASCAL-S SOD ECSSD HKU-IS

Figure 9. Joint distribution of prediction confidence (horizontal axis) and prediction accuracy (vertical axis) on the six SOD testing datasets.
The dashed red diagonal line represents the perfectly calibrated oracle model. Compared to the existing methods, our proposed SCVRM
further reduces the areas of distribution that deviate from the oracle.



Joint Distribution DensityHigh Low

Fo
ca

l L
os

s
Ad

aF
oc

al
AS

LP

DUTS-TE DUT-OMRON PASCAL-S SOD ECSSD HKU-IS

Figure 9. Joint distribution of prediction confidence (horizontal axis) and prediction accuracy (vertical axis) on the six SOD testing datasets.
The dashed red diagonal line represents the perfectly calibrated oracle model. Compared to the existing methods, our proposed SCVRM
further reduces the areas of distribution that deviate from the oracle.



DUTS-TE DUT-OMRON PASCAL-S SOD ECSSD HKU-IS

SC
VR

M
 (O

ur
s)

Joint D
istribution D

ensity
H

igh
Low

Figure 9. Joint distribution of prediction confidence (horizontal axis) and prediction accuracy (vertical axis) on the six SOD testing datasets.
The dashed red diagonal line represents the perfectly calibrated oracle model. Compared to the existing methods, our proposed SCVRM
further reduces the areas of distribution that deviate from the oracle.


	. Introduction
	. Related Works
	. Preliminary
	. Settings and Notations
	. Vicinal Risk Minimisation

	. Method
	. Self-Calibrating Vicinal Risk Minimisation
	. Connection between SCVRM and VRM
	. Practical Model

	. Experiments and Results
	. Implementation Details
	. Model Calibration Degree Performance
	. Model Calibration on Out-of-Distribution Data
	. Ablation Study
	. Discussion

	. Conclusion
	. Proof
	. Connection between SCVRM and VRM

	. Implementations
	. Additive Gaussian Noise 
	. Radial Basis Function - Additional Options
	. Vicinal Risk Minimisation - Implementation Details
	. Example Vicinal Data Under Different Hyperparameters  and .
	. Training and Inference Time

	. Evaluation Metrics
	. Model Calibration
	. Dense Classification

	. More Ablation Studies
	. Effect of SCVRM on Classification Accuracy

	. Experiments with Different Backbones
	. Experiments on Additional Dense Classification Tasks
	. Camouflaged Object Detection
	. Smoke Detection

	. Experiment on Multi-Class Dense Classification Task (Semantic Segmentation)
	. Generalisation to Existing SOD Methods
	. How does soft vicinity work in SCVRM?

	. More Joint Distribution Plots on SOD Testing Datasets

