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Figure 1. The super-category distribution of foreground object in
DESOBAv2 dataset.

Figure 2. The distribution of images with different numbers of
detected instances in DESOBAv2 dataset. Each bar further con-
tains the distribution of images with different numbers of valid
instances.

In this document, we provide additional materials to
support our main submission. In Section 1, we will pro-
vide example images and more statistics of our DESOBAv2
dataset. In Section 2, we will describe the technical de-
tails of post-processing. In Section 3, we will show the re-
sults of our ablated versions. In Section 4, we will show
the qualitative results of our method and baseline methods
on DESOBA dataset [2]. In Section 5, we will show more

qualitative results of our method and baseline methods on
DESOBAv2 dataset. In Section 6, we will show more qual-
itative results on the real composite images and report the
B-T score. In Section 7, we will compare our method with
recent generative composition methods [7, 9]. In Section 8,
we will show some failure cases of our method.

1. More Statistics of Our DESOBAv2 Dataset
First, we plot the super-category distribution of foreground
objects in our DESOBAv2 dataset in Figure 1. We classify
all objects into five super-categories (people, constructions,
vehicles, sundry, animals). From Figure 1, it can be seen
that our DESOBAv2 dataset covers a diversity of categories,
in which “people” is the dominant super-category.

We provide some examples from our DESOBAv2 dataset
in Figure 3 and Figure 4. For each super-category (peo-
ple, constructions, vehicles, sundry, animals), we show two
tuples in the form of {Ic,Mfo,Mfs,Mbo,Mbs, Ig}, in
which Ic is composite image, Mfo is foreground object
mask, Mfs is foreground shadow mask, Mbo is back-
ground object mask, Mbs is background shadow mask, Ig
is ground-truth target image.

Then, we summarize the statistics of detected instances
and valid instances in our DESOBAv2 dataset. Recall that
we use object-shadow detection model [8] to detect object-
shadow pairs, and refer to one detected object-shadow pair
as one detected instance. After manually filtering the low-
quality instances, we refer to the remaining instances as
valid instances. Our DESOBAv2 dataset has in total 21, 575
images. In Figure 2, we first plot the distribution of im-
ages with different numbers of detected instances, based on
which most images have fewer than 5 detected instances.
Among the images with specific number of detected in-
stances, we further plot the distribution of images with dif-
ferent numbers of valid instances. Note that all images in
our dataset have at least one valid instance, so 10, 752 im-
ages with one detected instance all have one valid instance.
The images with more than one detected instance have dif-
ferent numbers of valid instances.

2. Technical Details of Post-processing
To address the problem of color shift and background dis-
tortion (see Figure 8), we develop a post-processing net-
work which consists of one encoder and two decoders, as
illustrated in the left part of Figure 5. The encoder Ep takes
the concatenation of generated image Ĩg , composite image
Ic, and foreground object mask Mfo as input. It can be
seen that Ĩg and Ic have notable color discrepancy. One de-



Figure 3. Some examples of “people”, “vehicles”, and “sundry” super-categories in our DESOBAv2 dataset. From left to right in each
row, we show the composite image Ic, the foreground object mask Mfo, the foreground shadow mask Mfs, the background object mask
Mbo, the background shadow mask Mbs, the ground-truth target image Ig .

coder Di produces the rectified images Ĩ ′
g to fix the color

shift problem. Its main goal is adjusting the color of Ĩg
to match Ic, that is, the output Ĩ ′

g and the input Ic should
be the same except the foreground shadow region. When

the color of the other regions is rectified, the color of fore-
ground shadow region is rectified synchronously. The recti-
fied foreground shadow region will be included in the final
image.



Figure 4. Some examples of “animals” and “constructions” super-categories in our DESOBAv2 dataset. From left to right in each row, we
show the composite image Ic, the foreground object mask Mfo, the foreground shadow mask Mfs, the background object mask Mbo,
the background shadow mask Mbs, the ground-truth target image Ig .

Figure 5. The framework of our post-processing network. In the left part, we show our post-processing network structure which can refine
a generated image. In the right part, we show the process of constructing training data to train post-processing network.



Figure 6. The ablation studies on weighted noise loss. From left to right are input composite image (a), foreground object mask (b), results
of row 1 (c), row 2 (d), row 3 (e) in Table 2 in the main paper, and ground-truth (f).

Figure 7. The ablation studies on intensity modulation. From left to right are input composite image (a), foreground object mask (b),
results of row 1 (c), row 4 (d), row 5 (e) in Table 2 in the main paper, and ground-truth (f).

The other decoder Dm predicts the foreground shadow
mask M̃ ′

fs. Intuitively, the foreground shadow region could
be easily localized by spotting the content difference be-
tween inputs Ĩg and Ic. The input foreground object mask
Mfo could also provide useful hints for the location of fore-
ground shadow. Compared with the foreground shadow
mask M̃fs predicted by denoising U-Net, M̃ ′

fs is more
accurate with higher resolution. The final image can be
obtained by Ĩ ′

g ◦ M̃ ′
fs + Ic ◦ (1 − M̃ ′

fs), in which ◦ is
element-wise product. In this way, we rectify the color of
foreground shadow region and faithfully preserve the back-
ground details.

Both the encoder and the two decoders have four blocks.
Each encoder block has three 3× 3 conv layers with ReLU
followed by a downsampling layer. Each decoder block has
three 3 × 3 conv layers with ReLU followed by an upsam-
pling layer. The whole network structure is U-Net, with
skip connections from all encoder blocks to the correspond-
ing decoder blocks.

Next, we discuss the construction process of training
data to train the post-processing network. The construction
process is illustrated in the right part of Figure 5. We hope
that the post-processing network only adjusts the color of
Ĩg without changing the foreground shadow shape. To sim-



Figure 8. The ablation studies on post-processing. From left to right are input composite image (a), foreground object mask (b), results of
row 6 (c), row 7 (d) in Table 2 in the main paper, and ground-truth (e).

Method B-T score ↑
ShadowGAN -0.312
Mask-ShadowGAN -1.284
ARShadowGAN -0.228
SGRNet 0.062
SGDiffusion 1.763

Table 1. B-T scores of different methods on 100 real composite
images.

ulate the color shift issue, we perturb the color of ground-
truth image Ig in DESOBAv2 training set. To ensure that
the simulated color shift is close to the real color shift, we
first obtain our generated result Ĩg , and then optimize an
image-specific look-up table (LUT) as the color mapping
from ground-truth image Ig to generated result Ĩg . After
that, we apply the optimized LUT to Ig to get the perturbed
ground-truth image Ip. Note that Ig and Ip are only differ-
ent in color. When training the post-processing network, we
treat Ip as the pseudo generated image Ĩg , which is taken
along with the composite image Ic and foreground object
mask Mfo as input. Ig is used to supervise the rectified
images Ĩ ′

g , and Mfs is used to supervise the predicted fore-
ground shadow mask M̃ ′

fs.

3. Visualization of Ablation Studies
In Table 2 in the main paper, we conduct ablation studies
to prove the effectiveness of each design in our method.
We show the visual results of our ablated versions on DES-

OBAv2 test set. We divide all ablated versions into three
groups. The first group contains row 1, row 2, row 3, which
validates the effectiveness of weighted loss. The second
group contains row 1, row 4, row 5, which validates the
effectiveness of intensity modulation. The third group con-
tains row 6 and row 7, which validates the effectiveness of
post-processing.

The visual results of the first group are shown in Fig-
ure 6. By comparing (c) and (e), we can observe that the
shapes of generated foreground shadows of (e) are more ac-
curate and closer to the ground-truth (f), which proves that
it is useful to pay more attention to the expanded shadow re-
gion. However, when not expanding the foreground shadow
mask (d), only emphasizing the shadow region makes the
model prefer to generate unreasonably large shadows.

The visual results of the second group are shown in Fig-
ure 7. By comparing (c) and (e), we can observe that in-
tensity modulation can substantially enhance the intensity
of generated shadow, which is more compatible with back-
ground shadows. The improvement of (e) over (d) veri-
fies that background shadows could provide useful hints for
shadow intensity modulation.

The visual results of the third group are shown in Fig-
ure 8. From (c), we can see that the global color tone of
generated image severely deviates from the input composite
image (a), and some background details (yellow bounding
boxes in the second row) are lost. The improvement of (d)
over (c) verifies that post-processing is able to address the
color shift and preserve the background details.



Figure 9. Visual comparison of different methods on DESOBA dataset. From left to right are input composite image (a), foreground
object mask (b), results of ShadowGAN [11] (c), MaskshadowGAN [3] (d), ARShadowGAN [6] (e), SGRNet [2] (f), SGDiffusion (g),
ground-truth (h).

4. Evaluation on DESOBA Dataset

To further substantiate the robustness of our model, we train
all methods on DESOBAv2 training set and then finetune
them on DESOBA training set. We test different methods
on DESOBA test set, and visualize the results in Figure 9.

We can see that our model excels in generating more ac-
curate and plausible shadow shapes in comparison to the
baseline methods. ShadowGAN [11] and Maskshadow-
GAN [3] are struggling to produce shadows. ARShadow-
GAN [6] tends to produce oval and blurry shadows, regard-

less of the object shape. In contrast, our model is capable
of producing shadows with reasonable shapes and intricate
details, even for the person with complicated pose (e.g., row
1) and hollowed-out objects (e.g., row 4).

Besides, we observe that SGRNet is prone to overfit the
artifacts in DESOBA dataset. The artifacts are brought by
manual shadow removal, based on which the model may
find a shortcut for the shadow outline. As shown in row 6
and row 7, the generated shadows of SGRNet are surpris-
ingly close to the ground-truth, while the shadow shapes



Figure 10. Visual comparison of different methods on DESOBAv2 dataset. From left to right are input composite image (a), foreground
object mask (b), results of ShadowGAN [11] (c), MaskshadowGAN [3] (d), ARShadowGAN [6] (e), SGRNet [2] (f), SGDiffusion (g) and
ground-truth (h).

could have many possibilities. We conjecture that SGR-
Net finds a shortcut based on the artifacts in the foreground
shadow regions of input composite images.

5. More Visualization Results on DESOBAv2
In the main paper, we have shown the visualization results
of different methods on DESOBAv2 test set. Here, we pro-
vide more visualization results on DESOBAv2 test set in
Figure 10, based on which we have consistent observations
as in the main paper.

In particular, our method can generate shadows with
more plausible shapes and intensity, while other baseline
methods even fail to produce any shadow. For example,
in row 1 and row 3, the shadow generated by our method
has more delicate shape details associated with human pose

(e.g., hand holding).

6. More Results on Real Composite Images
The composite images in DESOBA and DESOBAv2 test
sets are synthetic composite images, which may have do-
main gap with the real composite images. To validate
the effectiveness of our method on real composite images,
we evaluate different methods on 100 real composite im-
ages provided by [2], which are obtained by pasting fore-
ground objects on background images. Since the fore-
grounds/backgrounds in real composite images are sourced
from DESOBA test set, we train all methods on DESOBAv2
training set and finetune them on DESOBA training set.
Note that 100 real composite images provided by [2] con-
sist of 74 composite images with one foreground object



Figure 11. Visual comparison of different methods on real composite images. From left to right are input composite image (a), foreground
object mask (b), results of ShadowGAN [11] (c), MaskshadowGAN [3] (d), ARShadowGAN [6] (e), SGRNet [2] (f), SGDiffusion (g).

and 26 composite images with two foreground objects. For
the composite images with two foregrounds, we apply our
model twice, each time with the shadow generated for one
foreground object.

The results of different methods are shown in Figure 11.
Our model is capable of generating realistic foreground
shadows, far exceeding the existing baselines. We can ob-
serve that the results of SGRNet on real composite images
are much worse than those on DESOBA, which again veri-
fies that SGRNet is likely to overfit the artifacts in DESOBA
dataset. In contrast, our method has better generalization

ability and significantly outperforms SGRNet on real com-
posite images.

Since these real composite images do not have ground-
truth images, we conduct user study to compare different
methods. Following SGRNet [2], given each composite im-
age, we construct 10 image pairs by randomly selecting 2
from 5 results generated by 5 methods. In total, we can
construct 1000 image pairs based on 100 real composite
images. 50 users are asked to participate in this subjective
evaluation. Each user could see an image pair each time and
select the one whose foreground shadow is more realistic



Figure 12. Visual comparison with generative composition methods on DESOBAv2 dataset. From left to right are input composite image
(a), foreground object mask (b), results of ObjectStitch [7] (c), PBE [9] (d), SGDiffusion (e) and ground-truth (f).

and compatible with the background. In total, 50 users and
1000 image pairs lead to 50,000 pairwise results, based on
which the Bradley-Terry (B-T) model [1, 5] is used to cal-
culate the ranking of all methods. The B-T scores of differ-
ent methods are reported in Table 1. Our method achieves
the highest B-T score, which again proves that our method
has outstanding generalization ability and achieves better
results on real composite images.

7. Comparison with Generative Composition
Methods

With the popularity of generative foundation model, gener-
ative image composition has attracted considerable research
interest [7, 9, 10]. Specifically, given a pair of background
with bounding box and foreground object, they aim to in-
sert the foreground object into the bounding box to produce
a realistic composite image, in which the foreground object
is seamlessly blended into the background and harmonious

with the background. In the generated composite image, the
foreground object may have a shadow, even though these
methods did not specially consider the shadow problem.

However, these methods have evident drawbacks.
Firstly, they could only insert the object into the specified
bounding box, but the shadow could fall out of the scope
of bounding box, in which case they are unable to generate
reasonable shadow. Secondly, the identity of foreground
object could be significantly altered, which may be against
the user intention. The comparison between our approach
and generative image composition methods [7, 9] on DES-
OBAv2 test set is shown in Figure 12.

For [7, 9], we treat the bounding box enclosing the com-
posite foreground as bounding box and the cropped com-
posite foreground as reference object. We use their released
model pretrained on large-scale dataset [4]. Based on the re-
sults in Figure 12, we find that these methods [7, 9] are not
suitable for our task and their generated shadows have poor
quality. Unlike these methods, our approach can generate



Figure 13. Visualization of failure cases produced by our SGDiffu-
sion. From left to right are input composite image (a), foreground
object mask (b), results of SGDiffusion (c), ground-truth (d).

shadows with more precise locations and shapes, while pre-
serving the foreground identity.

8. Failure Cases
Our method can generally achieve satisfactory results.
However, for some challenging cases, our method may fail
to generate plausible shadows. As shown in Figure 13, for
floating objects, our model often fails to generate their shad-
ows (e.g., the white ribbon in the first row). Additionally,
our model sometimes cannot capture the internal structure
of certain items (e.g., the hollow center of the rolled-up rug
is not reflected in the shadow). Moreover, our model strug-
gles to accurately understand the object shapes from the bird
view (e.g. row 3). Lastly, when the shadows are long and
complex, our model may not produce satisfactory results
(e.g., row 4).
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