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Supplementary Material

1. More Discussion of Preliminaries
In this section, we provide more preliminaries and details of
our implementation for Score Distillation Sampling (SDS).

1.1. Diffusion Models

The diffusion model, which is a type of likelihood-based
generative model used to learn data distributions, has been
studied extensively in recent years [6, 21–24]. Given an
underlying data distribution q0(x), a diffusion model com-
poses two processes: (a) a forward process {qt}t∈[0,1]

to gradually add noise to the data point x0 ∼ q0(x0);
(b) a reverse process {pt}t∈[0,1] to denoise data (e.g.,
generation). Specifically, the forward process is de-
fined by qt (xt | x0) := N

(
αtx0, σ

2
t I

)
and qt (xt) :=∫

qt (xt | x0) q0 (x0) dx0, where αt, σt > 0 are hyper-
parameters. On the other hand, the reverse process is
described with the transition kernel pt(xt−1 | xt) :=
N (µϕ(xt, t), σ

2
t I) from p1(x1) := N (0, I). The train-

ing objective is to optimize µϕ by maximizing a variational
lower bound of a log-likelihood. In practice, µϕ is re-
parameterized as a denoising network ϵϕ(xt, t) [6] to pre-
dict the noise added to the clean data x0, which is trained
by minimizing the MSE criterion [6, 9]:

LDiff (ϕ) := Ex0,t,ϵ

[
ω(t) ∥ϵϕ (αtx0 + σtϵ)− ϵ∥22

]
, (1)

where ω(t) is the time-dependent weights. Besides, the
noise prediction network ϵϕ can be applied for approximat-
ing the score function [23] of the perturbed data distribution
q(xt), which is defined as the gradient of the log-density:

∇xt
log qt (xt) ≈ −ϵϕ (xt, t) /σt. (2)

This means that the diffusion model can estimate a di-
rection that guides xt towards a high-density region of
q(xt), which is the key idea Score Distillation Sampling
(SDS) [15, 25] for optimizing the 3D scene via well 2D
pre-trained models.

1.2. SDS with Classifier-Free Guidance

As one of the most successful applications of diffusion
models, text-to-image generation [16–18] generate sam-
ples x based on the text prompt y, which is also fed into
the ϵϕ as input, denoted as ϵϕ (xt; t, y). An important
technique to improve the performance of these models is
Classifier-Free Guidance (CFG) [5]. CFG modifies the orig-
inal model by adding a guidance term, i.e., ϵ̂ϕ(xt; y, t) :=
(1+s)ϵϕ(xt; y, t)−sϵϕ(xt; t,∅), where s > 0 is the guid-
ance weight that controls the balance between fidelity and

diversity, while ∅ denotes the “empty” text prompt for the
unconditional case. Recall the SDS gradient form to update
θ:

∇θLSDS(ϕ,x) = Et,ϵ

[
ω(t) (ϵϕ (xt; y, t)− ϵ)

∂x

∂θ

]
, (3)

and denote δx(xt; y, t) := ϵϕ(xt; y, t) − ϵ. In principle,
ϵ(xt; y, t) should represent the pure text-conditioned score
function in Eq. (3). But in practice, CFG is employed in
it with a guidance weight s to achieve high-quality results,
where we rewrite

δx(xt; y, t) = [ϵϕ(xt; y, t)− ϵ] + s[ϵϕ(xt; y, t)− ϵϕ(xt; t,∅)].
(4)

As DreamFusion [15] uses s = 100 for high fidelity, our
implementation adopts s = 50 with the enhancement of
structural and semantic guidance to preserve some diversity.
The two types of guidance can also be seen as another form
of prompt guidance that is more generalizable and robust.
Therefore, there is a gap between the original formulation in
Eq. (3) and the practical coding implementation in Eq. (4).

2. More Discussion of Our Method
Discussion of Our Framework. Existing 3D generation
methods are based on single diffusion models, such as a
3D diffusion model for 3D native methods [8, 14], a 2D
diffusion model for 2D-lifting methods [3, 12, 15, 26], or
a multi-view diffusion model for multi-view-based meth-
ods [13, 19, 20]. However, these methods suffers from lim-
ited diversity, Janus problems, or limited generation styles.
Instead of using single diffusion models, we find that a hy-
brid text-to-3D pipeline with carefully-designed guidance
has potential to simultaneously address these concerns and
achieve both SOTA 3D fidelity and 2D texture richness only
using basic diffusion models (e.g., SD-2-1-base [17]) in-
stead of larger ones (e.g., SDXL [1]), also reducing the gen-
eration process from several hours to 20 minutes. While a
simple combination yields undesired results, our focus is to
design a unified framework by setting 3D diffusion as aux-
iliary and bridging them with our structural and semantic
guidance and the balanced annealing strategy.
Discussion of the CLIP Input. In our framework, we uti-
lize normal images instead of traditional RGB images as
inputs for CLIP due to their capability to richly convey ge-
ometric details, including both local nuances and silhouette
features of shapes. This choice significantly enhances ge-
ometry learning. Furthermore, the inclusion of normal im-
ages in the CLIP-filtered dataset LAION-5B suggests that
these images are not deemed out-of-distribution (OOD) for



CLIP. Fig. 1 shows that CLIP extracts discriminative se-
mantic features from normal images.

front view features

back view features

optimization iteration

Figure 1. t-SNE visualization of CLIP features. Prompt: “A head
of Terracotta Army.”

3. Additional Implementation Details
Training details. Our geometry model Fθ and appearance
model Tη is approximated by three-layer MLPs and we ap-
ply adam [10] optimizer to update them with an initial learn-
ing rates of 1×10−3 to decaying to 5×10−4. In particular,
our method is optimized for 2500 iterations about 15 min-
utes to learn Fθ and 2500 iterations about 10 minutes to
learn Tη . For geometry modeling, we utilize the Open3D
library [27] to calculate the signed distance function (SDF)
value for each point in Equations 2 and 3 in the main pa-
per. In our experiments, the DMTet-based coarse 3D prior
building stage is critical as it not only provides coarse 3D
knowledge with consistency but also boosts the speed of the
convergence of generation. For appearance modeling, since
our focus in this paper is to fully exploit easily obtained
coarse 3D knowledge that serves as guidance for 2D lifting
optimization (as discussed in Section 3.3 of our paper), we
do not design a specific appearance model for our frame-
work. Note that our geometry model is plug and play and
we can leverage different models [2, 3, 11], we leverage the
same PBR materials approach in Fantasia3D [3] to achieve
photorealistic surface renderings and better aligns with our
geometry modeling.
Hyperparameter settings. We select the camera positions
(r, κ, φ) in the spherical coordinate system, where r denote
radius, κ is the elevation and φ is the azimuth angle respec-
tively. Specifically, we sample random camera poses at a
fixed r = 2.5 with the κ ∈ [−30◦, 30◦]. In a batch of b × l
images, we partition φ into l intervals in [−180◦, 180◦] and
uniformly sample b azimuth angles in each interval. For
structural guidance, we set σ = 1 in Eq. (4) in the main
paper as the standard deviation of the Gaussian filter. We
tune λstruc and λsem in {0.01, 0.1, 1, 5, 10, 20, 30, 100}. We

find that often λstruc = 10 and λsem = 30 works well with
β = 0.5 in the step annealing technique, which may balance
the magnitude of SDS losses and better guide the 2D lifting
to refine the 3D contents with multi-view coherence. We
assigned the value of m to the epoch at around 1000 itera-
tions. For the guidance weight ω(t), we follow the Dream-
Time [7] to achieve higher fidelity results. Our codes for
implementation will be available upon acceptance.

4. Additional Experiments and Analysis

4.1. Additional User Study

To further demonstrate the effectiveness and impressive vi-
sualization results of our Sherpa3D, we conducted a more
intuitive user study (Figure 2) on 20 text prompts of five
baselines (ShapE [8], DreamFusion [15], Magic3D [12],
ProlificDreamer [26], Fantasia3D [3]) and ours. The study
engaged 50 volunteers to assess the generated results in 20
rounds. In each round, they were asked to select the 3D
model they preferred the most, based on quality, creativity,
alignment with text prompts, and consistency. We also com-
pare our method with recent finetuning-based techniques,
such as Zero123 [13] and MVDream [20], which utilize
more 3D data [4] to retrain a costly 3D aware diffusion
model from Stable Diffusion [17]. We use the same text
prompts and settings as mentioned above. As shown, we

Figure 2. User study of the rate from volunteers’ preference for
each method in the inset pie chart.

observe that Sherpa3D is preferable (65%) by the raters on
average. In other words, our model is preferred over the best
of all baselines in most cases. What’s more, our Sherpa3D
also outperforms than fine-tuning based method in terms of
overall performance as they easily suffer from styles (light-
ning, texture) overfitting [13, 20]. We believe this is strong
proof of the robustness and quality of our proposed method.

4.2. More Qualitative and Quantitative Results

Sherpa3D. In Figure 7, 8, 9, we present more text-to-3D
results obtained with Sherpa3D, which can generate high-
fidelity, diverse, and 3D-consistent results within 25 min-
utes. Besides the impressive 3D consistency and high fi-
delity, we can also change the style of generated 3D content



(Figure 3) by only modifying a small part of the prompt,
while preserving the basic structure of 3D content, which is
more convenient for users to flexibly edit generated objects.

A detailed and realistic 3D model of a 
vintage camera

A detailed and realistic 3D model of a vintage 
camera, leather texture

A futuristic battle robot, amidst a post-
apocalyptic urban wasteland

A futuristic battle robot, toy style

Figure 3. Sherpa3D can be used for flexible editing through a
small part of the prompt modification.

Generalizability and diversity. The preservation of gen-
eralizability is particularly attractive, which leads to more
diverse and realistic results. We achieve this by maximizing
retention of the original 2D diffusion priors in text-to-3D
pipeline, while incorporating the geometric information in
a soft manner compared with re-training or fine-tuning with
3D data. Fig. 4 shows that our method obtains good results
for complex prompts.

 “A tiger wearing sunglasses and a leather jacket, riding 
a motorcycle.”

“A robot and a dinosaur playing chess in high resolution.”

Figure 4. Generalizable results of our method.

Evaluation of adjacency-based metric. In the main pa-
per, we employ the quantitative metrics presented in most
SDS-based methods [12, 15, 26] for fair comparisons. In
this section, we expand our analysis through the inclusion of
additional results from adjacency-based metrics to provide
a more comprehensive comparison for multi-view consis-
tency. Tab. 1 shows better 3D coherence of Sherpa3D.
More comparison results. We provide more comparisons
with baselines in Figure 10, 11. To further demonstrate the
robustness and generalization of our method, we compare

Table 1. Evaluation of adjacency-based metric. Prompt:‘A head of
Terracotta Army.”

Method A-LPIPS VGG ↓ A-LPIPS Alex ↓
Shap-E [8] 0.2113 0.1725

DreamFusion [15] 0.2030 0.1453
Magic3D [12] 0.1940 0.1372

ProlificDreamer [26] 0.1843 0.1322
Fantasia3D [3] 0.2350 0.1933

Debiased-SDS [? ] 0.1920 0.1340
Ours 0.1081 0.0748

our Sherpa3D with Zero123 [13] and MVDream [20] in
Figure 5. Although the concurrent work MVDream and
Zero123 can also resolve the multi-view inconsistency is-
sues via fine-tuning a costly viewpoints-aware model, we
observe that it is prone to overfit the limited 3D data [4].
Specifically, MVDream generates strange color styles while
Zero123 fails in such open-vocabulary prompts.

“A head of the Terracotta Army”

“Hyper-realistic image of a snow leopard in a winter landscape”

Sherpa3D (Ours) MVDream Zero123

Figure 5. Comparison with MVDream [20] and Zero123 [13].

More ablation study results. In this section, additional ab-
lation study results of our methods are presented. Figure 6
offers a qualitative illustration with the prompt, ”A DSLR
photo of an adorable Corgi dog with a wagging tail.” More-
over, quantitative analyses are conducted and displayed in
Table 2, demonstrating the efficacy of our proposed designs.

Sherpa3D w/o structural guidance

w/o semantic guidance w/o 3D coarse prior

Figure 6. More qualitative results of ablation study. Prompt: “A
DSLR photo of an adorable Corgi dog with a wagging tail.”



“A futuristic battle robot, heavily armed, amidst a post-
apocalyptic urban wasteland”

“A luxurious sky-blue leather handbag with a sleek and 
elegant design, highlighted by its vibrant blue color”

“A cybernetic biomechanical arm, with a blend of organic 
and mechanical elements”

“A statue of a angel”

“Commercial airliner in flight, sleek and modern design”

“Iron Man in his state-of-the-art suit, confidently standing, 
looking ahead, ready for action”

Figure 7. More generated results using our Sherpa3D within 25 minutes. Our work can generate high-fidelity and diversified 3D results
from various text prompts, free from the multi-view inconsistency problem.



“Hyper-realistic image of a snow leopard, capturing its 
camouflage and majestic stance”

“Detailed portrait of a noble knight, full armor, intricate 
helmet design”

“An ultra-detailed illustration of a mythical Phoenix, rising 
from ashes, vibrant feathers in a fiery palette”

“A detailed and realistic 3D model of a vintage camera”

“Spaceship,futuristic design,sleek metal,glowing thrusters, 
flying in space”

“A DLSR Photo of the Leaning Tower of Pisa”

Figure 8. More generated results using our Sherpa3D within 25 minutes. Our work can generate high-fidelity and diversified 3D results
from various text prompts, free from the multi-view inconsistency problem.



“A blooming red rose, with velvety petals, delicate green 
leaves, and a captivating fragrance that fills the air”

“A head of the Terracotta Army”

“Vintage wooden race car, polished mahogany finish, classic 
design with spoked wheels”

“A futuristic-style motorcycle with sleek design, neon lights, 
and a sci-fi aesthetic in an urban setting”

“A carved wooden Bodhisattva from China’s Song dynasty”

“A DSLR photo of an adorable Corgi dog with a wagging tail”

Figure 9. More generated results using our Sherpa3D within 25 minutes. Our work can generate high-fidelity and diversified 3D results
from various text prompts, free from the multi-view inconsistency problem.



Sherpa3D
~25min

Fantasia3D
~ 45min

ProlificDreamer
~ 3h

DreamFusion
~ 1h

Shap-E
~10s

Magic3D
~ 40min

“Commercial airliner in flight, sleek and modern design”

“Iron Man in his state-of-the-art suit, confidently standing, looking 
ahead, ready for action”

“A statue of a angel”

“A 3D model of A Darth Vader helmet, highly detailed”

Figure 10. Qualitative comparisons with baseline methods across different views. All methods use stabilityai/stable-diffsuion-2-1-base for
fair comparison. We observe that baselines suffer from severe multi-face issues while Sherpa3D achieves better quality and 3D coherence.



Sherpa3D
~25min

Fantasia3D
~ 45min

ProlificDreamer
~ 3h

DreamFusion
~ 1h

Shap-E
~10s

Magic3D
~ 40min

“Spaceship,futuristic design,sleek metal,glowing thrusters,flying in space”

“A detailed and realistic 3D model of a vintage camera”

“Hyper-realistic image of a snow leopard, capturing its camouflage and 
majestic stance”

“A luxurious sky-blue leather handbag with a sleek and elegant design, 
highlighted by its vibrant blue color”

Figure 11. Qualitative comparisons with baseline methods across different views. All methods use stabilityai/stable-diffsuion-2-1-base for
fair comparison. We observe that baselines suffer from severe multi-face issues while Sherpa3D achieves better quality and 3D coherence.



Table 2. Quantitative results of ablation study. Prompt: “A head
of Terracotta Army.”

Method A-LPIPS VGG ↓ A-LPIPS Alex ↓
Multi-view
consistency

↑ Overall
quality

↑

w/o Structural Guidance 0.1543 0.1215 6.22 6.55
w/o Semantic Guidance 0.1662 0.1302 5.45 5.85

w/o Step Annealing 0.1210 0.1175 6.75 7.35
Full 0.1081 0.0748 8.95 8.74
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