
Solving Masked Jigsaw Puzzles with Diffusion Vision Transformers

Supplementary Material

6. Expanded Approach Description
We start this section by revisiting the mathematical formu-
lation of conditional diffusion models, alongside an explo-
ration of the self-attention mechanism and positional encod-
ing inherent in transformers.

6.1. Conditional Diffusion Models

Diffusion models [10] are generative models character-
ized by forward and reverse diffusion processes. The for-
ward process destroys the data from the true distribution
x0 ∼ q(x0) using a Markov chain to add Gaussian noise at
each step: q(xt|xt−1) := N (

√
1− βtxt−1, βtI), where βt

is a small positive constant that represents the noise level,
t is the diffusion step, and I is the identity matrix. Since
the noise used at each step is Gaussian, q(xt|x0) can be
obtained in closed-form q(xt|x0) = N (xt;

√
αtx0, (1 −

αt)I), where αt =
∏t

s=1(1− βs). The reverse process de-
noises xt to recover x0, and is defined as: pθ(xt−1|xt) :=
N (xt−1;µθ(xt, t), σθ(xt, t)I), where µθ and σθ are ap-
proximated by a neural network. [10] has shown that this
reverse process can be trained by solving the optimization
problem minθ∥ϵ − ϵθ(xt, t)∥22, where ϵθ is a trainable de-
noising function, and estimates the noise vector ϵ that was
added to its noisy input xt.
Conditonal Diffusion Models Diffusion models are in
principle capable of modelling conditional distributions of
the form p(x|y), where y is a conditional input. In the
context of conditional diffusion models, the model learns
to predict the noise added to the noisy input given a set
of conditions, including the time step t and the conditional
inputs y. The reverse process in this case is defined as:
pθ(xt−1|xt,y) := N (xt−1;µθ(xt, t|y), σθ(xt, t|y)I). The
conditional diffusion model learns a network ϵθ to predict
the noise added to the noisy input xt with

L(θ) = Ex0∼q(x0),ϵ∼N (0,I),t,y[∥ϵ− ϵθ(xt, t, y)∥22] (1)

where xt =
√
αtx0+(1−αt)ϵ, and L is the overall learning

objective of the diffusion model.

6.2. Transformers and positional encoding

Transformers Recent advancements in Natural Language
Processing (NLP) and Computer Vision (CV), exemplified
by Transformers [7, 29], have garnered considerable suc-
cess. In the realm of transformers, each element in a se-
quence or every patch in an image is typically embedded
into a vector or token. These tokens traverse through an ar-
chitecture composed of a stack of Self-Attention (SA) and

Multi-Layer Perceptron (MLP) modules, with the SA mech-
anism standing out as their fundamental component. The
SA module is designed to capture long-range interactions
among three types of inputs: queries Q, keys K, and values
V, where the values are linearly combined according to the
importance of each key representing each of the queries.

More concretely, let X = [x1, . . . ,xN] ∈ RD×N , de-
note a set of N data tokens. Then, the queries, keys and
values Q = [q1, . . . ,qN] ∈ Rd×N , K = [k1, . . . ,kN] ∈
Rd×N , and V = [v1, . . . ,vN] ∈ Rd×N , are computed
through linear multiplication of the inputs with learnable
weights denoted by WQ ∈ RD×d, WK ∈ RD×d, and
WV ∈ RD×d:

Q = WQX, K = WKX, and V = WV X.

Subsequently, a similarity matrix, or the attention map, is
calculated using the dot-product between queries and keys.
The normalized attention map, is then employed for the
weighted aggregation of the values:

SA(X) = Vsoftmax
(
KTQ√

d

)
(2)

where

softmax
(
KTQ√

d

)
i,j

=
exp(kT

i qj/
√
d)∑

i exp(k
T
i qj/

√
d)

(3)

An essential characteristic of SA is its lack of awareness of
positional information in the input[32]. In other words, the
output’s content remains independent of the input order:

S(SA(X)) = SA(S(X)) (4)

where S(X) = [xπ1
, . . . ,xπN

] denotes a shuffle operator
on the tokens, with the left and right instances being the
same permutation. Positional information can be introduced
into the tokens by incorporating the use of positional encod-
ing, which is added to the tokens before the SA and Multi-
Layer Perceptron (MLP) layers.

As suggested in [12], the information utilized by SA
can be categorized into three types: 1) relative positional-
based attention, 2) absolute position-based attention, and 3)
contents-based attention. For solving temporal jigsaw puz-
zles, where positional information might be less informa-
tive, it is natural to prioritize the model’s focus on content-
based information.

Layer Norm

Scale, Shift

Scale

Multi-Head
Self-Attention

Input Tokens

Image
Patch Noised

PE

Layer Norm

Scale, Shift

Scale

Feedforward

MLP

Timestep t

MLP

+

+

𝛼!

𝛼"

𝛾", 𝛽"

𝛾!, 𝛽!

Figure 8. Diffusion transformer block for image jigsaw puzzles.

Table 6. Hyperparameters for our image diffusion transformer

Model DiT
Layers 12

Hidden dimension 768
MLP size 3072

Heads 12
Patch size 16 / 17 / 60

7. Implementation Details
7.1. Image Experiments

Diffusion Vision Transformer architecture. We followed
the standard ViT architecture, with extra Adaptive normal-
ization layers added before and after MLP layers and multi-
head attention layers, shown in Fig 8. Notably, our approach
applies the diffusion model directly to image pixels rather
than the latent space, providing a unique perspective on im-
age understanding. In the context of image jigsaw puzzles
without a gap, each image undergoes resizing and random
cropping to a fixed size of 192 × 192 pixels. Within the
DiT framework, the image is further segmented into 3 × 3

Input Features

Video
Latents

Scale, Shift

MLP

Timestep t

Pseudo-3D
Conv

𝛼

Noised
PE

Pseudo-3D
Attention

Spatial
Downsampling

×𝑁

MLP

Scale

𝛾, 𝛽

D
ow

nsam
pling B

lock

Downsampling
Block

Middle
Block

Upsampling
Block

Upsampling
Block

MLP

Reconstructed
Video Latents

Positional
Embedding

𝛼, 𝛾, 𝛽

𝛼, 𝛾, 𝛽

𝛼, 𝛾, 𝛽

𝛼, 𝛾, 𝛽

Figure 9. Illustration of video model that we use for solving video
jigsaw puzzles.

patches with 64×64 pixels resolution, subsequently embed-
ded into 9 patch tokens. To explore the impact of eroded
gaps in image jigsaw experiments, images are initially re-
sized to 255×255 and then cropped into 3×3 patches with
a resolution of 85× 85 pixels. During training, a patch size
of 64 × 64 is randomly selected, whereas in testing, a cen-
ter crop method is employed to obtain image patches. The
noised positional embedding undergoes processing through
a Multilayer Perceptron (MLP) to align its dimension with
that of the image tokens. Subsequently, the image tokens
are added with the positional embedding tokens, forming
an input that is fed into the diffusion transformers.

Input

JPDVT-SI
Raw

Input

JPDVT-SI

Raw

Input

JPDVT-SI

Raw

Input

JPDVT-SI

Raw

Input

JPDVT-SI
Raw

Input

JPDVT-SI
Raw

Figure 10. The reshuffling and inpainting results on 10 pieces MovingMNIST experiment with different numbers of missing pieces. Frames
highlighted within red boxes showcase the inpainting capabilities of our model.

Our DiT models undergo training with a batch size of
256 over 300 epochs. A learning rate of 10−4 is employed,
and the noised positional embedding undergoes diffusion
through a linear schedule. The timestep T is consistently
set at 1000.

Predicted position encodings. For a puzzle with N pieces,
we generate N true position embeddings. Given a piece dif-
fusion generated positional embedding, we find the closest
true embedding (using L2 distance) to assign the piece its
final location. To avoid collisions, once a true position is
used, it is removed as a candidate.

7.2. Video Experiments

Latent Diffusion Models. In our video models, we lever-
age the publicly available VAE encoder introduced in [22]
to transition video frames from pixel space to latent space.
Subsequently, we apply conditional diffusion models to the
video latents. Each frame, initially sized at 256× 256× 3,
undergoes transformation into a latent feature map with di-
mensions 32 × 32 × 4. The positional embedding under-
goes processing through an MLP layer before integration
with the video latents. Our chosen architecture, as pro-
posed by [23], is composed of four downsampling blocks,
a middle block, and four upsampling blocks. Within each

Input

JPDVT-SI

Raw

Input

JPDVT-SI

Raw

Input

JPDVT-SI

Raw

Figure 11. The reshuffling and inpainting results on 32 pieces CLEVRER experiment with different numbers of missing pieces. Frames
highlighted within red boxes showcase the inpainting capabilities of our model.

block, there are multiple pseudo-3D convolutional lay-
ers, a pseudo-3D attention layer, and a spatial downsam-
pling/upsampling layer. An illustrative depiction of the ar-
chitecture is presented in Figure 9, and detailed hyperpa-

rameters for each block are meticulously documented in Ta-
ble 7.

Our video models across various datasets were trained
using a consistent batch size of 32. Each model under-

Ground Truth

Condition

JPDVT-SI

Figure 12. Video temporal super-resolution result.

Table 7. Hyperparameters in the downsampling blocks for our
video models

#Block 1st 2nd 3rd 4th

Hidden dimension 64 128 256 512
Feature map size 32 16 8 4

P-3D conv layers 3
Attention head Dim 64
Attention heads 8

went training for a total of 250,000 steps. We implemented
a linear noise schedule, while keeping the total timestep,
T = 1000. The learning rate for the training process was set
to 10−4. We trained our models on various datasets, each
with a distinct temporal downsampling rate. Specifically,
we applied downsampling factors of 1, 4, 2, and 2 for the
MovingMNIST, CLEVRER, UCF101, and QST datasets,
respectively. We used the same downsampling rate for the
experiments run on the baselines.

In our experiments involving missing frames, we ran-
domly sampled a varying number of missing elements, with
the maximum set at 25% of the total pieces. Gaussian noise
was introduced to both the positional encoding matrix L
and the matrix representing missing pieces Em. In our loss
function, we employed a ratio of 0.8 to 0.2 to balance the
loss term of missing frames and the loss term of the posi-
tional encoding.

Percentage of Missing Pieces

CLEVRER

N
or

m
al

iz
ed

 K
en

da
ll

 D
is

ta
nc

es
 ×

10
3

Figure 13. CLEVRER dataset with 32 pieces, each with 1 frame.

Additional results showcasing the outcomes of our video
reshuffling and inpainting experiments are presented in Fig-
ures 10 and 11. These figures vividly illustrate our mod-
els’ proficiency in concurrently learning both visual context
and positional information. Figure 13 shows the results of
Kendall distances of our proposed methods with different
numbers of missing pieces with a total of 32 pieces on the
CLEVRER dataset.

Table 8. Hyperparameters for experiments of J-VAD

Dataset MMNIST CLEVRER UCF101
optimizer AdamW

learning rate 1e-4
momentum 0.9

weight decay 5e-4
image size 32 64 112
batch size 64 32 8

epochs 300 200 200

Table 9. Hyperparameters for experiments on VCOP

config MMNIST CLVR UCF QST
optimizer SGD

learning rate 1e-3
momentum 0.9

weight decay 5e-4
lr scheduler RLRP
batch size 256 16 16 4
image size 32 64 112 128

Implementation of baselines. We conducted baseline ex-
periments utilizing publicly available code from the follow-
ing papers: [6, 30, 33]. The specifics of the training con-
figurations are outlined in Tables 8 and 9. In the case of
experiments involving J-VAD [30] and scenarios with more
than 10 pieces, the models were trained for 2,000 epochs.

8. Downstream Task: Temporal Super-
resolution

The proposed framework can be directly applied to increase
the temporal resolution of a given video, where the missing
puzzle pieces are the intermediate frames. Fig. 12 shows
an example where an input video with low sampling rate
(top) was used to generate a video at a higher sampling rate
(middle).

