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{0, 1, 2, 3} is the extracted local feature, corresponding to the fea-
ture resolution of {H⇥W,H/2⇥W/2, H/4⇥W/4, H/8⇥W/8}

A. Local Feature Branch Model Structure
A.1. Local Feature Extractor
The structure of our local feature extractor is illustrated in
Figure A1. As mentioned in Section 3.1, we adopt a CNN
and Transformer hybrid structure for local feature extrac-
tion. This design diverges from that of EMA-VFI[37] by
reducing the network depth. Furthermore, to enhance dis-
criminability within local windows, we incorporate sine-
cosine positional embeddings before the windowed cross-
attention operation.

A.2. Flow Estimation
The Flow Estimation Structure, depicted in Figure 1, con-
sists of two sequential Flow Estimation blocks, as shown in
Figure A2. These two blocks are not identical. The first
block, detailed in Figure A2 takes input frames I0, I1 2
H ⇥W ⇥ 3 and local features a30, a31 2 H/8⇥W/8⇥ C3

as input. Its output includes the initial intermediate flow
estimations eFt!0, eFt!1, along with the initial fusion map
fM .

When pretraining on Vimeo-90K, eFt!0, eFt!1 and fM
are directly fed into the second block, along with warped
images I0!t, I1!t and the finer local features a20, a

2
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H/4 ⇥ W/4 ⇥ C2. In the stages of finetuning and infer-
ence, however, eFt!0, eFt!1 and fM are processed by the
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Figure A2. Model Structure of the Initial Flow Estimation Block.

sparse global matching block for correction, resulting in re-
fined flow estimations Ft!0, Ft!1 and an updated fusion
map M , which are then input to the second block with
I0!t, I1!t and a20, a

2
1.

A.3. Refine Net
We follow a similar design in RIFE[9]. We use Context Net
to first extract the low-level contextual features. These fea-
tures are then processed through backward warping, guided
by the intermediate flows. The refinement stage involves a
U-net shaped network, which can enhance the output frame
in a residual form, using the warped features and flows.

B. Model Loss
We use the same training loss with EMA-VFI [37], which
is the combination of Laplacian loss and warp loss, defined
as:

L = Llap + �
X

i

Li

warp (12)

where � is the loss weight for warp loss. Following [37],
we set � = 0.5.

C. Generalizability
We apply our sparse global matching block on RIFE[9] and
EMA[37] to show that our two-step strategy is applicable in
more similar flow-based structures. The result is presented
in Table A2 and Table A1 accordingly.

D. Scalability
We scaled our model to a bigger model size with 59.3M pa-
rameters, basically aligned with EMA-VFI-base [37] which



Table A1. Results after applying sparse global matching block on EMA-VFI-small. 1/N means that we sparsely select 1/N points of
the initial intermediate flows estimation.

X-Test-L SNU-FILM-L Xiph-L

2K 4K hard extreme 2K 4K

EMA-VFI 29.51/0.8775 28.60/0.8733 28.57/0.9189 23.18/0.8292 30.54/0.8718 28.40/0.8109
EMA-VFI-1/8 29.65/0.8788 28.77/0.8753 28.62/0.9192 23.31/0.8306 30.59/0.8712 28.61/0.8114
EMA-VFI-1/4 29.81/0.8816 28.91/0.8776 28.68/0.9196 23.41/0.8326 30.64/0.8720 28.78/0.8128
EMA-VFI-1/2 30.12/0.8886 29.24/0.8840 28.70/0.9196 23.46/0.8343 30.63/0.8722 28.91/0.8146

Table A2. Results after applying sparse global matching block on RIFE. 1/N means that we sparsely select 1/N points of the initial
intermediate flows estimation.

X-Test-L SNU-FILM-L Xiph-L

2K 4K hard extreme 2K 4K

RIFE 29.87/0.8805 28.98/0.8756 28.19/0.9172 22.84/0.8230 30.18/0.8633 28.07/0.7982
RIFE-1/8 30.50/0.8902 29.52/0.8838 28.61/0.9189 23.35/0.8298 30.26/0.8637 28.45/0.8023
RIFE-1/4 30.68/0.8981 29.72/0.8901 28.63/0.9191 23.52/0.8340 30.30/0.8643 28.66/0.8048
RIFE-1/2 30.88/0.9034 29.90/0.8944 28.66/0.9195 23.52/0.8350 30.35/0.8656 28.69/0.8066

has 65.7M parameters. Results listed in Table D3. From
Table D3, we can draw the following conclusion.

As more points are incorporated into sparse global
matching, the performance gradually saturates. This ob-
servation is intuitive, considering that not every aspect of
the initial estimated flow is inaccurate, nor is every aspect
of the global matching flow entirely precise. This is evi-
denced by Table 5, where the merge block is absent in this
ablation. However, upon integrating the merge block (re-
fer to Table 3), with more points are involved, up to full
global matching, performance still has a little improvement
with increased point involvement, meaning that there is still
potential for enhancement within the local branch of the
smaller model with the help of our merge block.

But when we change our model with a larger local
branch with more parameters, the capacity of the local
branch becomes stronger. Consequently, it becomes evi-
dent that involving all points in global matching leads to
performance degradation compared to utilizing only half the
points, thus affirming our pursuit of sparsity.

E. Model Size Comparisons

We conduct a series of parameters and runtime comparisons
on an Nvidia RTX 2080Ti GPU. Illustrated in Table E4, our
local branch is aligned with EMA-VFI-small in terms of
runtime and parameters, therefore, we mainly compare our
results with EMA-VFI-small model setting.

Table D3. Results on a larger local branch. Note that we disable
the test-time augmentation when testing for direct comparison.

XTest-L-2K

PSNR SSIM

EMA-VFI [37] 30.85 0.9005

Ours-local branch 30.68 0.9010

Ours-1/8 31.10 0.9080
Ours-1/4 31.19 0.9102
Ours-1/2 31.27 0.9115

Full Global Matching 31.20 0.9104

Table E4. Comparisons of model size and corresponding per-
formance. We only list the X-Test-L-2K results for simplicity.

Inference Time on
512x512 Resolution Parameters X-Test-L-2K

PSNR SSIM

RIFE 10ms 10M 29.87 0.8805
EMA-VFI-small 25ms 14.5M 29.51 0.8775
EMA-VFI-base 132ms 65.7M 30.85 0.9003

XVFI 22ms 5.6M 29.82 0.8493
BiFormer 59ms 11M 30.32 0.9067

Ours-local-branch 23ms 15.4M 30.39 0.8946
Ours-1/2-Points 74ms 20.8M 31.03 0.9075

F. Different Flow Reversal Teqniques

We compare our flow shift strategy with the flow reversal
layer in [35], complementary flow reversal in [29], lin-



Table F5. Comparisons between different flow reversal tech-
niques.

X-Test-L-2K X-Test-L-4K

PSNR SSIM PSNR SSIM

flow reversal layer [35] 30.57 0.8977 29.45 0.8886
CFR [29] 30.73 0.9001 29.63 0.8913

linear combination [13] 30.69 0.9000 29.59 0.8907
CNN layer 30.18 0.8932 29.13 0.8853

linear reversal 30.70 0.9017 29.59 0.8924
flow shift (Ours-1/8) 30.83 0.9022 29.73 0.8928

Table G6. 8⇥ Interpolation Results on X-Test (PSNR).

X-Test (8⇥ interpolation)

2K 4K

EMA-VFI-small-t [37] 31.75/0.9164 30.59/0.9078
RIFE-m [9] 32.23/0.9229 31.09/0.9141
FILM [27] 31.50/0.9162 OOM
Ours-1/2 32.38/0.9272 31.35/0.9179

ear combination in [13], CNN layer and linear reversal
on Ours-1/8 setting. Shown by Table F5, our flow-shifting
strategy is the most suitable for sparsely sampled flows.

G. Interpolating multiple frames into two
frames

We follow the recursive interpolation method in FILM [27]
and present our multi-frame interpolation (between two
frames) results in Table G6.

H. Finetuning or Training From Scratch

In our experiments, we conducted training from scratch on
the Vimeo-90K [4] dataset using a sparse global matching
block with full global matching. This approach still demon-
strated noticeable effects attributed to the global match-
ing process. However, as indicated in Table H7, the abil-
ity to capture large motion was not on par with the re-
sults obtained after finetuning on a dataset with larger mo-
tion. Therefore, finetuning on a small batch of large mo-
tion datasets (X-Train) is more efficient than training from
scratch on a large batch of small motion datasets (Vimeo-
90K). This efficiency is evidenced by the reduced num-
ber of required training steps, with finetuning necessitat-
ing only 13.7k steps as opposed to 480k steps for training
from scratch. This finding aligns with the observations re-
ported in FILM [27], suggesting that large motion datasets
can bring large motion capturing ability.

Table H7. Comparisons between from scratch and finetuning.

X-Test-L-2K X-Test-L-4K

PSNR SSIM PSNR SSIM

Ours-local-branch 30.39 0.8946 29.25 0.8861
Global-From Scratch 30.63 0.9012 29.61 0.8958

Global-Finetuning 31.03 0.9074 29.95 0.8974
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Figure I3. Visualization of Matching Failure and Repair

Operations Inference Time

Local Feature Branch 23 ms

Flow Compensation Branch 50.6 ms
- Global Feature Extraction 45 ms
- Others 5.6 ms

(512⇥ 512 Resolution) Total 73.6ms

Table J8. Time Profile on Our Proposed Algorithm. Measured
on an Nvidia RTX 2080Ti GPU.

I. Failed Matching
When matching fails, the merge block in our method can
adaptively merge the flows, depressing the impact of match-
ing failure. Moreover, we have a refine block to further re-
pair the merged flow. We also provide a visualization in
Figure I3.

J. Inference Speed Bottleneck
As shown in Table J8, the bottleneck of our pipeline lies
in the global feature extractor, instead of other parameter-
free components. One naive solution is to replace it with
a simpler and lighter global feature extractor in the future.
And another solution is to distill the global feature extrac-
tion ability from GMFlow [34] to our own feature extractor,
which needs more experiment and probably even training
data from optical flow datasets.
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