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Due to page limitation of the main body, as indicated,
the supplementary material offers more details on the ideal
reverse state ỹ∗t−1, further discussion on the threshold ∆,
additional quantitative results and more visual results with
higher resolution, which are summarized below:
• More derivation details on the ideal reverse state ỹ∗t−1, as

mentioned in Sec.2.2.2 of the main body (Sec.1).
• More intuition on the threshold ∆ involved in the adap-

tive resampling strategy, as mentioned in Sec.2.4.2 of the
main body (Sec.2).

• Visualization of the denoised results with higher resolu-
tion for IR-SDE [5] and StrDiffusion during the denois-
ing process, as mentioned in Sec.3.2 of the main body
(Sec.3).

• Additional quantitative results for the comparison with
state-of-the-arts, as mentioned in Sec.3.3 of the main
body (Sec.4).

• Additional visual results about the ablation study about
the progressive sparsity for the structure over time, as
mentioned in Sec.3.4.1 of the main body (Sec.5).

1. More details on the Ideal Reverse State ỹ∗t−1

Due to page limitation, we offer more derivation details
from Eq.(7) to Eq.(11) in the main body. Based on the
Eq.(7) of the main body, the optimal reverse state is nat-
urally acquired by minimizing the negative log-likelihood:

ỹ∗t−1 = argmin
yt−1

[− log q(yt−1|yt, y0, xt−1, x0)]

= argmin
yt−1

[− log
q(yt−1|y0)
q(xt−1|x0)

],

(1)

where ỹ∗t−1 denotes the ideal state reversed from ỹt under
the structure guidance. To solve the above objective, we
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compute its gradient as:

∇ỹ∗
t−1

{
− log q(ỹ∗t−1|yt, y0, x∗

t−1, x0)
}

= ∇ỹ∗
t−1

{
− log

q(ỹ∗t−1|y0)
q(x∗

t−1|x0)

}
= −∇ỹ∗

t−1
log q(ỹ∗t−1|y0) +∇x∗

t−1
log q(x∗

t−1|x0)

=
ỹ∗t−1 − µy − e−θt−1(y0 − µy)

1− e−2θt−1

−
x∗
t−1 − µx − e−δt−1(x0 − µx)

1− e−2δt−1

,

(2)

where the texture µy is the masked version of its initial state
y0 and θt is time-dependent parameter that characterizes the
speed of the mean-reversion, the structure µx is the masked
version of its initial state x0 and δt is time-dependent pa-
rameter that characterizes the speed of the mean-reversion,
θt−1 =

∫ t−1

0
θzdz and δt−1 =

∫ t−1

0
δzdz. Setting Eq.(2)

to be zero, we can get ỹ∗t−1 as:

ỹ∗t−1 =
(1− e−2θt−1)(x∗

t−1 − µx)

1− e−2δt−1

− (1− e−2θt−1)e−δt−1(x0 − µx)

1− e−2δt−1

+ e−θt−1(y0 − µy) + µy,

(3)

where x∗
t−1 is the ideal state reversed from xt for the struc-

ture, given as:

x∗
t−1 =

1− e−2δt−1

1− e−2δt
e−δ

′
t(xt − µx)

+
1− e−2δ

′
t

1− e−2δt
e−δt−1(x0 − µx) + µx.

(4)



To simplify the notation, δ
′

t =
∫ t

t−1
δidi, we can derive the

ideal reverse state ỹ∗t−1 as:

ỹ∗t−1 =
1− e−2θt−1

1− e−2δt
e−δ

′
t(xt − µx)

+
(1− e−2θt−1)(e−2δt − e−2δ

′
t)

(1− e−2δt−1)(1− e−2δt)
e−δt−1(x0 − µx)

+ e−θt−1(y0 − µy) + µy.

(5)

Since δt = δt−1 + δ
′

t, we can reformulated the second term
in Eq.(5) as follows:

(1− e−2θt−1)(e−2δt − e−2δ
′
t)

(1− e−2δt−1)(1− e−2δt)
e−δt−1(x0 − µx)

=
(1− e−2θt−1)(e−2(δt−1+δ

′
t) − e−2δ

′
t)

(1− e−2δt−1)(1− e−2δt)
eδ

′
t−δt(x0 − µx)

=
(1− e−2θt−1)(e−2δt−1 − 1)

(1− e−2δt−1)(1− e−2δt)
e−2δ

′
teδ

′
t−δt(x0 − µx)

=− (1− e−2θt−1)

(1− e−2δt)
e−δ

′
te−δt(x0 − µx)

=−

(
(1− e−2θt−1)

(1− e−2δt)
e−δ

′
t

)
e−δt(x0 − µx).

(6)

Based on the above, we have

ỹ∗t−1 =

(
1− e−2θt−1

1− e−2δt
e−δ

′
t

)
(xt − µx)︸ ︷︷ ︸

Consistency term for masked regions

−

(
1− e−2θt−1

1− e−2δt
e−δ

′
t

)
e−δt(x0 − µx)︸ ︷︷ ︸

Balance term for masked regions

+ e−θt−1(y0 − µy)︸ ︷︷ ︸
Semantics term for masked regions

+ µy︸︷︷︸
Unmasked regions

.

(7)

2. More Intuition on the Threshold ∆ in the
Adaptive Resampling Strategy

The specific threshold ∆ in the adaptive resampling strat-
egy is utilized to evaluate the semantic correlation between
the structure and texture during the inference denoising pro-
cess. Specifically, when the score value S from the dis-
criminator D is smaller than the threshold ∆, i.e., S < ∆,
we will perform the resampling operation for the structure
to enhance the semantic correlation for desirable results.
A naive strategy is to mutually select a fixed value of ∆,

Algorithm 1: Adaptive Resampling Strategy
Input: the noise version of masked texture yT and

the noise version of masked structure xT ,
trained noise-prediction networks ϵ̃ϕ and ϵ̃φ
for the texture and structure, the timestep T ,
the discriminator D, the maximum number
of iterations U

Output: The denoised inpainted result y0
1 for t = T, . . . , 1 do
2 Denoised structure xt−1 = xt − (dxt)ϵ̃φ(xt,t)

3 Denoised texture yt−1 = yt − (dyt)ϵ̃ϕ(yt,xt−1,t)

4 Obtain the threshold ∆ = D(yt−1, xt−1, t− 1)
5 for u = 1, . . . , U do
6 x̃t = xt−1 + (dxt−1)
7 x̃t−1 = x̃t − (dx̃t)ϵ̃φ(x̃t,t)

8 ỹt−1 = yt − (dyt)ϵ̃ϕ(ỹt,x̃t−1,t)

9 Obtain the score S = D(ỹt−1, x̃t−1, t− 1)
10 if S < ∆ then
11 Update xt−1 = x̃t−1

12 Update yt−1 = ỹt−1

13 else
14 break
15 end
16 end
17 end
18 return the denoised results y0

which, however, is inflexible, since the semantic correlation
actually varies greatly as the inference denoising process
progresses. Unlike the previous work [4] that aims to con-
dition the denoising process for image inpainting task via
the resampling strategy, our adaptive resampling strategy
actually serves as a by-product; the goal is to refine the cor-
relation between the structure and texture as possible. To
this end, we present to exploit the structure xt−1 and the
texture yt−1 without the adaptive resampling strategy in the
t-th timestep, to serve as the inputs for the discriminator D,
leading to a score value, which is treated as the threshold
∆. Under such case, the semantic correlation between the
structure and texture can be always boosted to yield better
denoised results. Based on the threshold ∆, the whole adap-
tive resampling strategy is summarized in Algorithm 1.

3. Visualization of the Denoised Results with
Higher Resolution

As mentioned in Sec.3.2 of the main body, due to page limi-
tation, we further provide more denoised results with higher
resolution on the Places2, PSV and CelebA datasets; see
Fig.1. The results show that, unlike the denoised results
from IR-SDE [5] that always address the clear semantic dis-



Table 1. Comparison of quantitative results (i.e., PSNR, SSIM, and FID) under varied mask ratios on CelebA with irregular mask dataset.
↑: Higher is better; ↓: Lower is better. The best results are reported with boldface.

Metrics PSNR↑ SSIM↑ FID↓
Method Venue 0-20% 20-40% 40-60% 0-20% 20-40% 40-60% 0-20% 20-40% 40-60%

PIC [9] CVPR’ 19 33.67 26.48 21.58 0.978 0.934 0.865 2.340 6.430 14.22
MAT [3] CVPR’ 22 35.31 27.76 23.22 0.984 0.946 0.888 0.900 2.550 4.600
CMT [2] ICCV’ 23 35.92 28.24 23.78 0.986 0.952 0.900 0.840 2.540 5.230
ICT [6] CVPR’ 21 33.27 26.40 21.84 0.979 0.939 0.877 1.870 5.610 12.42
BAT [8] MM’ 21 34.63 26.91 22.26 0.983 0.944 0.883 1.060 3.750 7.300
RePaint* [4] CVPR’ 22 36.23 29.01 23.92 0.991 0.969 0.912 0.790 2.530 5.030
IR-SDE [5] ICML’ 23 36.01 28.85 23.76 0.991 0.966 0.910 0.870 2.840 5.700
StrDiffusion (Ours) - 36.44 29.31 24.50 0.994 0.971 0.923 0.660 2.400 4.950

crepancy between the masked and unmasked regions (see
Fig.1(a)), for StrDiffusion, such discrepancy progressively
degraded until vanished, yielding the consistent semantics
(see Fig.1(b)), which are consistent with our analysis in the
main body.

4. Additional Quantitative Results
Evaluation metric. We adopt three metrics to evaluate
the inpainted results below: 1) peak signal-to-noise ratio
(PSNR); 2) structural similarity index (SSIM) [7]; and 3)
Fréchet Inception Score (FID) [1]. PSNR and SSIM are
used to compare the low-level differences over pixel level
between the generated image and ground truth. FID evalu-
ates the perceptual quality by measuring the feature distri-
bution distance between the synthesized and real images.

As indiacted in the main body, we further exhibit ad-
ditional quantitative results under varied mask ratios on
CelebA with irregular mask dataset; see Table.1. It is ob-
served that our StrDiffusion enjoys a much smaller FID
score, together with larger PSNR and SSIM than the com-
petitors, confirming that StrDiffusion effectively addresses
semantic discrepancy between the masked and unmasked
regions, while yielding the reasonable semantics. Notably,
RePaint* and IR-SDE still remain the large performance
margins (at most 1.0% for PSNR, 0.2% for SSIM and 5.2%
for FID) compared to StrDiffusion, owing to the semantic
discrepancy in the denoised results incurred by the dense
texture. Albeit ICT and BAT focus on the guidance of the
structure similar to StrDiffusion, they suffer from a per-
formance loss due to the semantic discrepancy between
the structure and texture, which confirms our proposal in
Sec.2.2 of the main body — the progressively sparse struc-
ture provides the time-dependent guidance for texture de-
noising process.

5. Additional Visual Results for the Ablation
Study in Sec.3.4.1 of the Main Body

The ablation study in Sec.3.4.1 of the main body aims to
verify why the semantic sparsity of the structure should be

strengthened over time. In this section, we further exhibit
additional visual results by performing the experiments on
the PSV and Places2 datasets; see Fig.2. It is observed that
our gray2edge (Fig.2(d)) exhibits better consistency with
meaningful semantics in the inpainted results against others,
especially for edge2gray (Fig.2(c)), implying the benefits
of strengthening the sparsity of the structure over time. No-
tably, for gray2gray, the discrepancy issue in the denoised
results still suffers (Fig.2(b)), while edge2edge receives the
poor semantics (Fig.2(a)), which attributes to their invariant
semantic sparsity over time. Such fact confirms our propos-
als in Sec.3.4.1 of the main body.
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Figure 2. Additional visual results for the ablation study about the progressive sparsity for the structure over time, as an extension of Fig.8
in the main body.
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