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A. Interaction Field Estimation
With accurate object models and MANO [13] meshes

captured in our dataset, we benchmark estimating interac-
tion fields of hands and objects from color images. Apart
from recovering hand-object interaction fields in existing
work [4], our task also involves estimating those between
tools and target objects.

Problem formulation: Representing the left hand, right
hand, tool, and target object with l, r, t, and o, the task is
to estimate six interaction fields between hands and objects
(F r→t, F t→r, F l→o, F o→l, F t→o, F o→t) from a given
RGB frame, where field F a→b is defined as the distance to
the nearest vertex in mesh b for all vertices in mesh a.

Evaluation metrics: Following [4], we use the Mean
Distance Error to evaluate the precision of predicted in-

teraction fields, and the Acceleration Error to measure the
smoothness of those estimates.

Baselines, results and analysis: We set up two base-
line methods based on InterField-SF [4]. The first one
(InterField-SF separated) takes an image and two meshes
as input (e.g. the right hand and the tool) and estimates the
two fields between them. The second one (InterField-SF
concatenated) incorporates the image with meshes of both
hands, the tool, and the target object, and predicts six in-
teraction fields altogether. Table 1 shows the quantitative
results of the two methods. The primary distinctions among
test sets lie in the selection of tools and actions, with a rela-
tively weaker correlation to target objects. The results sug-
gest that these variations exert a more pronounced influence
on RT and TR. Within the fields of RT and TR, the method
performances on S1 significantly surpass those on S3, while
the latter outperforms both S2 and S4. This indicates that
the methods face challenges in generalizing to unseen ge-
ometries. The incorporation of seen geometries with unseen
actions (S3) also introduces additional complexities. These
challenges in generalization to both unseen geometries and
actions underscore the need for further exploration and re-
finement of the proposed methods.

B. Data Capturing Details
B.1. Camera Calibration

Camera intrinsic calibration. We use a traditional
method that places a checkerboard in the camera view with
known scales of grids and estimates the camera intrinsic
matrix and distortion using OpenCV functions.

Camera extrinsic calibration. After acquiring the cam-
era intrinsic, we perform a semi-automatic process for cal-
ibrating the camera extrinsic before data capturing. As
shown in Figure 1, we first place 12 markers in the scene.
Benefiting from our mocap system, we can obtain accurate
marker positions in the world coordinate system with errors
less than 1mm. We then manually annotate the pixel coor-
dinate of each marker in the color image, and compute the
optimal camera extrinsic minimizing re-projection error of
markers. We solve this Perspective-n-Point (PnP) problem
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Test Set Method Mean Distance Error (mm, ↓) Acceleration Error (m/s2, ↓)
RT TR LO OL TO OT RT TR LO OL TO OT

S1
InterField-SF (separated) 8.4 8.7 10.4 21.5 11.6 15.7 8.7 8.3 10.3 12.3 13.7 16.3

InterField-SF (concatenated) 8.1 8.5 10.1 21.3 12.7 17.3 9.0 8.6 10.4 11.9 14.6 17.7

S2
InterField-SF (separated) 14.9 32.5 14.7 18.9 15.6 12.5 10.5 11.4 12.0 10.7 13.8 11.6

InterField-SF (concatenated) 15.1 31.5 14.6 19.1 15.2 12.8 10.7 11.3 12.2 10.9 14.4 12.6

S3
InterField-SF (separated) 13.6 17.2 15.1 26.6 13.0 14.0 9.8 9.1 11.2 10.8 13.0 13.4

InterField-SF (concatenated) 13.4 16.9 15.2 27.1 14.3 14.2 9.9 9.0 11.1 11.1 13.9 14.3

S4
InterField-SF (separated) 13.9 34.2 12.5 19.0 15.0 12.5 12.6 9.6 10.7 10.3 14.5 13.3

InterField-SF (concatenated) 14.0 35.4 12.6 19.3 15.2 13.0 10.6 10.0 11.2 10.3 15.4 14.5

Table 1. Results on interaction field estimation [4], where R denotes right hand, T denotes tool, L denotes left hand and O denotes target
object (e.g. RT means right-hand-to-tool). Methods are examined via Mean Distance Error and Acceleration Error.

with OpenCV algorithms.

Figure 1. Calibrating the camera extrinsic.

B.2. Time Synchronization

We provide time-synchronized data from the different
sensor modalities. Our 12 industrial FLIR cameras receive
signals from the same signal generator through audio ca-
bles. To synchronize industrial cameras with our mocap
system and Realsense L515 camera, we record UTC times-
tamps for each frame captured by different cameras and per-
form nearest-neighbor matching among timestamps. The
maximal time difference between matched signals is 17ms.

C. Data Annotating Details
C.1. Details on Object Pose Optimization

We attach four markers with a radius of 4mm to the sur-
face of each object and obtain the object pose by capturing
marker positions by the optical mocap system. To reuse the
markers and optimization results, we mark a target position
on the object surface for each marker and attach markers to
these fixed positions before data collection. For each ob-
ject, we formulate the attached four markers as a rigid body
B and optimize the relative 6D pose T = [R, t] from the 3D
object model to B, where R ∈ SO(3) denotes 3D rotation,
and t ∈ R3 indicates 3D translation. Since markers actually
contact the object surface without interpenetration, we first
design contact loss Lc(q, P ) and penetration loss Lp(q, P )
as:

Lc(q, P ) = ∥q − pi∗∥2,
Lp(q, P ) = max(−n⃗T

i∗(q − pi∗), 0),
(1)

where q ∈ R3 is a query point, P = {pi ∈ R3}|P |
i=1 is

a point cloud, i∗ = argmin
1≤i≤|P |

∥q − pi∥2 denotes the index

of the closest point in P to q, and n⃗i denotes the normal
of the point pi. We then incorporate the two loss functions
and compute the optimal relative pose T ∗ via the following
function:

T ∗ = argmax
R,t

K∑
k=1

(Lc(Rqk + t, P ) + Lp(Rqk + t, P ))

[Lc(Rqk + t, P ) < α],

(2)

where K is the number of markers, qk ∈ R3 is the
marker position in the coordinate system of B, P is the ver-
tices of the object model, and α=1cm is a threshold select-
ing markers near the object. Given a manual initialization
of T , we use the Adam optimizer to find T ∗ with learning
rate 1e-4. In practice, we attach 10 additional markers to
the object surface (K=14) to improve the robustness of the
optimization, meanwhile using only four of them to track
the object during data capturing.

C.2. Details on 3D Hand Keypoint Localization

For the initial frame of the entire sequence, we employ
a pre-trained YOLOv3 [12] to obtain the bounding boxes
for both left and right hands. For subsequent frames, we
leverage the Track-Anything Model [17] along with the op-
timized hand pose from the preceding frame to generate
masks for both hands and compute bounding boxes based
on these masks. Then, we crop out sub-images containing
only one hand according to these bounding boxes. The re-
sulting sub-images undergo processing via the single-hand
pose estimation model MMPose [2] to determine 2D key-
point positions K2Dc [i] for each hand in each camera view.
In K2Dc

[i], c ∈ C denotes the set of all allocentric cameras,
and 1 ≤ i ≤ 21 represents the 21 joints on the hand.



Given that not all positions are accurate, we employ
RANSAC [5] to filter out imprecise 2D positions. In every
iteration of RANSAC, two 2D keypoint positions K2Dc1

[i]
and K2Dc2

[i] are chosen from two randomly selected differ-
ent camera views c1 and c2. Based on positions K2Dc1

[i]
and K2Dc2

[i], we can calculate their corresponding 3D
points K3D[i]<c1,c2> in the world coordinate system via
triangulation. Subsequently, we project this 3D point onto
camera planes and calculate the number of 2D keypoints
within 30 pixels around the projected point. After all itera-
tions, the 3D point K3D[i]<c1,c2>∗ with the highest number
of surrounding 2D keypoints is selected as the 3D keypoint
K3D[i]. This process is defined as

K3D[i] = argmax
K3D[i]<c1,c2>

12∑
c=1

(3)

around2D(projc(K3D[i]<c1,c2>),K2Dc
[i], 30),

where projc(·) project K3D[i] onto camera c, and
around2D(·) calculates the distance between two points,
outputting 1 if the distance is less than 30 pixels and
0 otherwise. In the selected iteration, the 2D keypoints
K2Dc [i] that are more than 30 pixels away from the pro-
jected point will be deemed invalid and will be excluded
from the subsequent optimization stage as validc[i] =
around2D(projc(K3D[i]),K2Dc

[i], 30).

C.3. Details on Hand Pose Optimization

We adopt MANO [13] to formulate a 3D hand mesh as
Θh = {θ, β, t}, where θ ∈ R48, β ∈ R10, and t ∈ R3

represent hand pose, hand shape, and wrist position, respec-
tively. For each participant, the shape parameters β are pre-
computed based on specially collected data with only two
hands and remain fixed in the subsequent hand pose opti-
mization process. The MANO model maps Θh to a 3D
hand mesh {J, V } = MANO(Θh), where J ∈ R778×3

and J ∈ R21×3 represent vertices and joints on hand, re-
spectively. we first fit a MANO model by minimizing the
following loss function:

Θ̂h =argmin
Θh

(λ2DL2D + λ3DL3D + λangleLangle+

(4)

λtcLtc) ,

where L2D and L3D encourages the MANO hand joints
to align with the 2D and 3D keypoints, Langle ensures a
natural hand pose, and Ltc promotes temporal smoothness.
Utilizing object pose, we then refine hand pose by minimiz-
ing the following loss function:

Θ̂h =argmin
Θh

(λ2DL2D + λ3DL3D + λangleLangle+

(5)λtcLtc + λpLp + λaLa) ,

where Lp prevents hand-object interpenetration, and La

encourages hand-object contact.
2D joint loss L2D. The 2D joint loss term is defined as

L2D =

12∑
c=1

21∑
i=1

validc[i] ∥projc(J [i])−K2Dc [i]∥
2
, (6)

where J [i] denotes the ith 3D hand joint position, the
projc(·) operator projects it onto camera c, K2Dc [i] is the
ith 2D keypoint position of hand in the camera view c,
and validc[i] which is determined in RANSAC indicates
whether K2Dc

[i] is a valid value.
3D joint loss L3D. The 3D joint loss term is defined as

L3D =

21∑
i=1

∥J [i]−K3D[i]∥2 (7)

where Ji denotes the ith 3D hand joint position and K3D[i]
is the ith 3D keypoint position fused by 2D keypoint posi-
tions from 12 allocentric views in RANSAC. 2D joint loss
L2D and 3D joint loss L3D provide the most direct super-
vision for hand pose, aligning the MANO hand with the
positions of keypoints.

Angle constraint loss Langle. The angle constraint loss
term imposes restrictions on the permissible angles for the
rotation of 15 joints, thus preventing undue distortion of the
fingers and ensuring a natural hand pose. In the MANO
model, the hand pose parameter θ ∈ R48, which can be
conceptualized as θ ∈ R16×3, signifies 16 axis-angle rep-
resentations. Among these, 1 axis-angle corresponds to the
global rotation of the hand, while the remaining 15 axis-
angle represent rotations of 15 joints on the hand. The angle
constraint loss term is defined following [19] as

Langle =

45∑
i=1

max
(
θi − θ[i], 0

)
+max

(
θ[i]− θi, 0

)
,

(8)

where θi and θi denote the upper and lower bounds, re-
spectively, for the ith joint angle parameter θ[i].

Temporal consistency loss Ltc. Due to noise in the data
and the randomness in the output of the hand pose estima-
tion model for each frame, the hand pose in the video may
exhibit a noticeable degree of jitter. While other loss terms
are applied to individual frames, this loss term considers
adjacent frames, helping to alleviate the jitter in the hand
pose. We draw inspiration from [19] and define temporal
consistency loss term as

Ltc =
∑
i∈I

(∥∥∆i
t

∥∥2 + ∥∥∆i
θ −∆i−1

θ

∥∥2) , (9)

where ∆i
t = ti − ti−1 and ∆i

θ = θi − θi−1. I represents
the index number within the entire sequence, excluding the
initial frame.



Attraction loss La. During the optimization process,
there might be insufficient contact between the hand and the
object. The attraction loss term encourages the hands near
the object to make sufficient contact with it and is defined
as

La =

778∑
i=1

around3D(Vh[i],Vo [i
∗] , 0.01) ∥Vh[i]−Vo [i

∗]∥2 ,

(10)

where Vh[i] is the ith vertex on hand mesh, Vo [i
∗] is

the vertex on the object closest to Vh[i], and around3D(·)
calculates the distance between two points, outputting 1 if
the distance is less than 0.01 meter and 0 otherwise. This
loss term is computed twice: once between the right hand
and the tool, and once between the left hand and the object.

Penetration loss Lp. During the optimization process,
there is a possibility of interpenetration between the hand
and the object. This is evidently unrealistic in real-world
scenarios. Therefore, a loss term is introduced to mitigate
such interpenetration. Similar to [6], we define penetration
loss term as

Lp =

778∑
i=1

max
(
−no (Vo [i

∗])
T
(Vh[i]−Vo [i

∗]) , 0
)
,

(11)

where the no(·) operator computes the normal for a ver-
tex, and Vh[i] represent the ith vertex on the hand mesh,
and Vo [i

∗] denotes the vertex on the object closest to Vh[i].
This loss term is computed twice: once between the right
hand and the tool, and once between the left hand and the
object.

D. Detailed Statistics on TACO
Object diversities. Figure 2 shows the 20 object cate-

gories in our dataset. The categories are chosen from every-
day hand-object interaction scenarios, and each object has a
proper scale that can be manipulated stably by a single hand.
Among these categories, 17 categories are utilized as tools
during interaction, and 9 categories are treated as target ob-
jects. Figure 3 illustrates 12 object instances from the brush
category, indicating the diversity of object geometries.

Interaction diversities. As a knowledge base sup-
porting generalizable studies on novel tool-action-object
triplets, TACO includes using different tools and target ob-
jects to perform the same action types. Figure 4 and 5 show
percentages of tool and target object usages in different ac-
tion types, respectively. All 15 action types involve inter-
action demonstrations from various kinds of target object
categories, while 12 out of them are performed by multiple
tool categories.

Motion speed. Table 2 shows statistics on the speed of
hand-object motions from different action types. vr, vj , v,

Figure 2. Visualization of 20 object categories in TACO, including
17 tool categories (shown in purple and brown) and 9 target object
categories (shown in purple and blue).

Figure 3. Visualization of 12 brushes in TACO.

Figure 4. Percentage of tool usage for each action type.

and ω represent the velocity of the hand wrist, the average
velocity of the MANO hand joints, the linear velocity of the
object, and the angular velocity of the object, respectively.
Compared to target objects, tools always dominate in inter-
action and have a significantly fast motion speed (16.6 cm/s
and 71.3 ◦/s on average), indicating the difficulties of fore-
casting and synthesizing their motions. Since all manipu-



Figure 5. Percentage of target object usage for each action type.

lation behaviors are performed by right-handed individuals,
the right hand commonly controls the tool and thus consis-
tently moves faster than the left hand among different action
types.

Hand pose distribution. Figure 6 illustrates the T-SNE
visualization of hand poses from TACO and HO3D [6]. The
distribution of hand poses from TACO mostly differs from
that of HO3D due to the different human behaviors.

Figure 6. T-SNE visualization of hand poses from TACO and
HO3D.

E. Details on Marker Removal Evaluation
Data processing. For each image from the raw videos

and the marker-removed ones, we first render the spheres
on the image to obtain their 2D mask and crop an image
patch with the boundary the same as the mask. We then
scale the image patch in equal proportions and place it at
the center of a 512x512 image with black background color.
Finally, a Gaussian kernel with σ=1.0 is utilized to augment
the 512x512 image as the network input.

Network training. For an image input I ∈ R512×512×3,
a U-Net [14] is used to estimate the heatmap H ∈ R512×512

that indicates the probability that each pixel belongs to the
inpainted image regions. The loss function is the mean-
square error comparing the estimated heatmaps against the
ground truth ones. The network is trained by an Adam [8]
optimizer with a learning rate of 5e-4.

F. Details on Evaluation Metrics
Evaluating compositional action recognition. Follow-

ing existing action recognition work [11, 18], we use Top-
1 Accuracy and Top-5 Accuracy to evaluate whether the
ground truth action label appears in the top-1 or top-5
predictions with the highest probabilities presented by the
method.

Evaluating generalizable hand-object motion fore-
casting. As a prediction task, motion forecasting ap-
proaches are assessed by measuring differences between
predictions and ground truths. Following the line of
human-object motion forecasting studies [1, 3, 15, 16],
we represent a hand as a 3D skeleton J ∈ R21×3 with
21 joints and use Mean Per Joint Position Error Je =

1
21M

∑M
k=1

∑21
i=1 ∥Ĵk,i − J̄k,i∥2 to measure hand predic-

tions, where M is the number of predicted frames, Ĵ is hand
skeleton predictions, and J̄ is ground truth values. Since
objects are rigid bodies, the translation error Te and rota-
tion error Re are defined as:

Te =
1

M

M∑
k=1

∥t̂k − t̄k∥2,

Re =
1

M

M∑
k=1

arccos
Tr(R̂T

k R̄k)− 1

2
,

(12)

where t̂ ∈ R3 and R̂ ∈ R3×3 are predicted object trans-
lation vectors and rotation matrices, t̄ and R̄ are ground-
truth ones, and Tr denotes the trace of a matrix.

Evaluating cooperative grasp synthesis. As a genera-
tive task, the benchmark should examine the physical plau-
sibility and reality of synthesized hand meshes. For assess-
ing physical plausibility, the contact ratio (Con. R) indicates
the proportion of results that are in contact with the tool,
while the interpenetration volume (Pen. V) denotes the av-
erage volume that is occupied by both the generated hand
and the tool and is computed by voxelizing hand-object
meshes to 1mm cubes and counting the intersecting ones.
The collision ratio (Col. R) examines conflicts between gen-
erated hands and the environment, computing the probabil-
ity of results penetrating the target object and the left hand.
To evaluate whether results are realistic, we first present an
interaction feature extractor (Figure 7) that encodes hand-
object vertices to a 64-dimensional feature f and obtain
ground truth feature distribution D̄ = {f̄i} by applying it to
real interaction snapshots. We then replace the vertices of
the right-hand mesh with those from synthesized ones and



Action
Right hand Left hand Tool Target object

vr(cm/s) vj(cm/s) vr(cm/s) vj(cm/s) v(cm/s) ω(◦/s) v(cm/s) ω(◦/s)
Put in 17.2(±11.5) 20.0(±13.2) 9.4(±10.5) 10.4(±11.8) 18.9(±20.9) 88.1(±116.3) 3.7(±6.6) 14.1(±35.3)

Put out 17.9(±11.6) 20.5(±13.0) 10.5(±10.5) 11.7(±11.7) 18.7(±20.9) 90.8(±129.1) 4.4(±7.5) 18.2(±67.0)
Skim off 15.4(±10.7) 18.0(±12.5) 9.4(±10.3) 10.2(±11.4) 17.1(±19.9) 70.8(±98.9) 3.7(±6.4) 15.0(±41.5)

Scrape off 13.4(±10.4) 15.4(±11.6) 9.6(±10.0) 10.7(±11.6) 16.7(±19.0) 69.5(±98.9) 4.0(±7.4) 19.0(±47.8)
Cut 13.7(±11.5) 15.5(±13.0) 8.4(±9.8) 9.5(±11.3) 15.4(±17.9) 70.1(±115.3) 3.1(±6.1) 13.3(±32.5)

Stir-fry 17.0(±12.2) 19.3(±13.3) 10.7(±9.7) 12.1(±11.7) 21.4(±20.5) 77.0(±88.2) 8.2(±15.5) 23.1(±63.7)
Stir 16.8(±12.6) 18.9(±13.7) 9.0(±10.0) 10.3(±11.2) 20.1(±20.3) 74.0(±114.6) 4.6(±7.4) 15.6(±29.5)

Brush 15.3(±12.2) 17.7(±14.5) 11.0(±10.4) 12.2(±11.9) 19.3(±22.3) 71.5(±167.6) 8.1(±11.4) 33.9(±55.6)
Dust 13.9(±9.5) 17.2(±11.4) 10.8(±10.4) 12.4(±12.1) 19.6(±21.9) 88.5(±121.1) 7.1(±10.6) 31.6(±49.7)

Pour in some 15.0(±13.0) 16.3(±14.2) 9.0(±10.8) 10.0(±12.7) 8.8(±13.2) 39.4(±77.9) 2.8(±5.2) 11.1(±27.4)
Empty 14.9(±13.6) 16.1(±14.7) 8.5(±10.6) 9.4(±12.5) 10.2(±14.2) 45.5(±83.49) 2.9(±5.4) 12.3(±40.0)
Smear 12.4(±12.5) 15.8(±15.2) 9.9(±11.4) 11.4(±12.3) 16.5(±19.5) 60.1(±161.6) 7.4(±10.8) 32.7(±59.5)

Hit 14.1(±11.1) 17.4(±13.1) 9.3(±9.6) 9.9(±9.9) 18.7(±23.9) 67.6(±114.1) 5.7(±10.1) 21.9(±40.0)
Measure 15.3(±11.3) 16.0(±12.4) 15.9(±13.8) 17.8(±16.7) 12.0(±14.8) 56.9(±102.0) 2.0(±5.6) 10.6(±24.2)
Screw 12.5(±11.7) 15.7(±13.0) 10.8(±12.2) 11.7(±13.0) 11.6(±18.5) 182.5(±278.0) 4.8(±8.7) 20.7(±37.1)

Overall 15.0(±11.7) 17.2(±13.4) 9.9(±10.6) 11.1(±12.1) 16.6(±19.9) 71.3(±125.9) 5.0(±8.8) 20.9(±46.9)

Table 2. Average hand and object motion speed for each specific action type.

obtain another feature distribution D̂ = {f̂i}. Finally, the
Fréchet Inception Distance (FID) score (FID) is computed
on D̂ and D̄ measuring the dissimilarity between them. The
interaction feature extractor is supervised-trained by decod-
ing the one-hot action label from f via a fully connected
layer.

Figure 7. Network structure of our interaction feature extrac-
tor. Given vertices of hand-object meshes, the network first uti-
lizes PointNet [10] to encode vertices of each mesh to a 128-
dimensional feature, respectively, and then adds the four features
together and acquires the interaction feature via a fully connected
layer.

G. Baseline Designs for Interactive Grasp Syn-
thesis

We modify baseline approaches [7, 9] to integrate the
interaction environment (the left hand and the target ob-
ject) into the network structure. We directly regard the in-
teraction environment as additional conditions for CVAE,
and apply existing point cloud encoders to transfer its point
clouds to feature vectors. Figure 8 compares our modified
HALO-VAE [7] structure with HALO-VAE−.

Figure 8. Comparison of HALO-VAE− and our modified HALO-
VAE [7].

H. Qualitative Results on Hand-object Motion
Forecasting

Figure 9 shows the qualitative results of CAHMP [3].
Although CAHMP achieves the best performance among
the four baseline methods, it commonly fails to forecast fast
movements (Figure 9 (a),(b)) from the right hand and the
tool, and encounters difficulty understanding human inter-
action intentions (Figure 9 (c),(d)). Please see our supple-
mentary video for more visualizations.



Figure 9. Qualitative results on hand-object motions predicted by
CAHMP [3]. The green and blue points denote the ground truth,
while the red and purple ones indicate the predicted motions. We
show five frames at 0.12, 0.24, 0.36, 0.48, and 0.60s.

I. TACO Visualization
Figure 10 shows our 12 RGB frames from all third-

person views and the RGB and depth images from our ego-
centric camera. Figures 11, 12, and 13 exhibit some exam-
ples of our hand-object meshes, hand-object segmentation,
and marker-removed image patches, respectively. Please
see our supplementary video for more data visualizations.

Figure 10. Visualization of allocentric and egocentric camera
views. Our system involves 12 allocentric RGB cameras and one
egocentric RGBD sensor.



Figure 11. Visualization of hand-object meshes. We overlay the original color frames with rendered hand-object meshes.



Figure 12. Visualization of automatic 2D hand-object segmentation.



Figure 13. Visualization of original and marker-removed image patches.
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