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Method 5 Tasks 10 Tasks 20 Tasks

baseline (SSRE) 40.2 40.0 39.3

CAM 41.2 40.7 40.4

SmoothGrad 42.1 41.0 40.4

Grad-CAM 44.1 43.9 43.5

Table 1. Ablation on methods for generating saliency maps on
Tiny-Imagenet.

A. Further Ablation Studies

Ablation on saliency methods. To show the generaliza-
tion of TASS, we use several methods to compute saliency
maps and report the results in Table 1. Grad-CAM performs
the best, although other methods yield performance gains,
demonstrating the effectiveness of TASS.

Ablation on low-level target maps. In the manuscript we
use CSNet [1] to compute all the pre-trained saliency and
boundary maps because it is very lightweight. Compared
to our main model, the pre-trained model has fewer than
1% parameters and requires 1.5% of the FLOPs (as shown
in Table 2). Note that we compute all low-level maps of-
fline before new tasks, and so the extra FLOPs should be
amortized over the number of epochs. Therefore, the addi-
tional FLOPs required by the low-level model is only about
0.015% of the main model, which is negligible in practice.

To show the effectiveness of TASS, we perform an abla-
tion on the low-level maps. We replace them with the Grad-
CAM generated from a ResNet-152 network. To avoid in-
formation leakage, ResNet-152 was trained from scratch.
Before each new task, we first train it only on task data and
use the Grad-CAM output to supervise saliency in our in-
cremental model. From Table 3 we see that TASS still out-
performs other methods. Moreover, TASS is applicable to
other models for generating saliency maps, (e.g. DFI [4]
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Model Parameter(M) FLOPS(G)

Ours 17.9 0.78

Pre-trained salient model 0.0941 0.012

Table 2. Parameters and FLOPs of the pre-trained salient model.
FLOPs are computed using 3× 32× 32 images.

Low-level source (Method) Accuracy (%)

PASS 39.3

SSRE 40.0

ResNet152 (Ours) 42.1

CSNet (Ours) 43.9

PoolNet (Ours) 44.2

DFI (Ours) 44.4

Table 3. Ablation on low-level saliency maps on Tiny-ImageNet
with 10 tasks.

or PoolNet [3]) with more parameters, and produces even
better performance with larger networks.

Ablation on method architecture and salient model pre-
training. We select PASS [7] as our baseline method to
apply TASS to (as shown in Table 4 and Table 5). Ex-
periments in these two tables are conducted on ImageNet-
Subset with 5 tasks. Since some methods use ImageNet
pretrained weights for better saliency map estimation, we
train CSNet [1] from scratch on the dataset (with and with-
out pretraining) for salient object detection [2, 5, 6]. This
allows us to verify that no information leakage happens due
to pretraining the saliency network on ImageNet. The low-
level network without pretraining works almost as well as
pretraining the saliency network on ImageNet. We also
compare the number of parameters of different methods in
Table 4. This shows that adding network capacity for PASS
from ResNet-18 to ResNet-32 with more parameters only
improves the performance marginally. Ours with ResNet-
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Figure 1. Visualization of some generated saliency noise maps.

Method Parameter (M) Accuracy (%)

PASS-Res18 14.5 50.4

PASS-Res32 21.7 51.2

SSRE-Res18 19.4 58.7

Ours-Res18 17.9 61.5

Table 4. Comparison of different method network architectures.
Method-Res18 denotes applying Method with ResNet18 as its
backbone.

Method Accuracy (%)

No pretraining 61.5

Pretrained salient detection model 62.0

Table 5. Ablation on salient detection network pretraining.

18 based on PASS achieves a significant gain surpassing
SSRE which has more parameters.

Our approach in non-DFCIL scenarios. We apply our
saliency supervision in a non-DFCIL scenario using PASS
in Table 6 by including 20 exemplars per class. TASS boosts
performance significantly here as well.

Method buffer size Acc (%)
PASS 20 52.36

PASS+TASS 20 55.75

Table 6. TASS on a non-DFCIL scenario.

Hyper-parameters of multiple losses. In Eq. 5 we
weight all loss terms equally. As suggested, we explore
more options in Table 7. Tuning further improves the per-
formance slightly, but we stick with λCIL = λlm = λdbs =
1.0 for convenience.

√
N in Eq. 2, where N is the number

of pixels, is used to normalize the L2 distance.

All loss permutations ablation. We give all possible
combinations of all three loss terms in Table 8. These re-
sults show that each component contributes to the final per-
formance and that a combination of them performs best.

λCIL λlm λdbs Acc(%)
1 1 1 55.01

0.1 1 1 55.27
1 0.1 1 54.22
1 1 0.1 54.31

Table 7. Hyper-parameters of multiple losses for SSRE+TASS.

Method L D S LD LS DS LDS
PASS 49.0 51.2 50.6 51.4 53.0 52.6 53.7 54.5
SSRE 55.0 56.2 55.8 56.7 57.3 57.0 57.6 57.9

Table 8. LDS represent Low-level multi-task supervision, Dilated
boundary supervision, and Saliency noise injection, respectively.

F & Acc (%) 50 30 10 0
PASS 49.03±0.9 46.78±0.9 44.65±1.0 40.27±1.0

PASS+TASS 54.45±0.4 51.22±0.5 48.58±0.5 44.30±0.5

Table 9. Ablation on F with T = 10.

Class division in experimental protocol. We follow con-
ventional experimental setups from previous works like
PASS and SSRE to divide the classes of the dataset as
F +C × T with F = 50. As suggested, we evaluate differ-
ent options for F in Table 9. TASS shows consistent gain
compared to the baseline under all settings.

B. More Visualizaions on TASS

Saliency Noise. For each ellipse there are 6 dimen-
sions: the center coordinate (x, y), the rotation angle α,
the mask weight w, and the major and minor axes (a, b).
x, y, α and w are sampled from a uniform distribution
over ranges: x ∈ [0, H), y ∈ [0,W ), α ∈ [0, 2π),
w ∈ [0, 1]. H and W denote the height and width of in-
put images. To generate ellipses of appropriate size, we
draw the major and minor axes from a Gaussian distri-
bution with µa = max(H,W )/2, σa = max(H,W )/6,
µb = min(H,W )/2, σb = min(H,W )/6. The sampled
a, b is clipped to[0,max(H,W )/2] and [0,min(H,W )/2],
respectively. For each ellipse, we create a saliency map
Si. We repeat this random generation process 3-5 times
and apply an element-wise max operation on the Si to ob-
tain a single saliency map S. Then we crop and resize S to
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Figure 2. Visualization of the embedding Fϕ(x) with and without
TASS. Compared to the baseline, our method preserves more dis-
criminative representations.

the original image size, with crop size sampled from a uni-
form distribution in [min(H,W )/2,min(H,W )], introduc-
ing center-aware saliency noise to the network for training.
Finally, we apply a Gaussian blur on S to better simulate a
realistic saliency map. The kernel size for Gaussian blur-
ring is the closest odd integer to min(H,W )/20. For each
encoder feature map, 10% of randomly selected channels
are directly masked with S, where each selected channel
will have an independent S. We visualize several generated
samples in Figure 1.
Embedding Visualization. Since our method helps the
model focus on the foreground, more class-specific pixels
contribute to the embedding. Thus embeddints are more
discriminative and contain less distracting background in-
formation. In Figure 2 we use t-SNE to visualize embed-
dings of five initial classes after learning the base and last
task in the 10-task setting on ImageNet-Subset. At the base
task, both Baseline (SSRE) and Ours (SSRE+TASS) per-
form well. After the last task, it is clear that TASS helps
maintain discriminative features between tasks while the
Baseline has overlapping embeddings.
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