
TexOct: Generating Textures of 3D Models with Octree-based Diffusion

Supplementary Material

1. Algorithm Details
Forward process. The Denoising Diffusion Probabilistic
Model (DDPM) [23] is a framework that learns the data dis-
tribution by incorporating a sequence of latent variables and
matching the joint distribution.

In our method, we apply the DDPM process to the octree
nodes. The model begins with a sample from the data dis-
tribution, denoted as x0 ∼ q(x0). Through a forward pro-
cess, q (xt | x0) =

∏T
t=1 q (xt | xt−1), the data is progres-

sively perturbed using Gaussian kernels q (xt | xt−1) :=
N

(√
1− βtxt−1, βtI

)
. This process generates a sequence

of increasingly noisy latent variables x1,x2, ...,xT . Impor-
tantly, xt can be directly sampled from x0. Additionally,
the shape of each xt aligns with the octree structure.

q (xt | x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt) I

)
, (6)

where αt := 1 − βt and ᾱt :=
∏t

s=1 αs. In the forward
process, the variances βt are generally fixed and increase
linearly from β1 = 10−4 to βT = 0.02. It is important to
choose a sufficiently large value for T (e.g., 1000) to ensure
that q (xT | x0) approximates a standard normal distribu-
tion N (0, I).

The primary objective of the diffusion model is to
model the joint distribution q (x0:T), which encompasses a
tractable sampling path for the marginal distribution q (x0).

Reverse process. To learn how to reverse the forward pro-
cess, the diffusion model defines a parameterized Markov
chain with parameterized transition kernels:

pθ (x0:T) := p (xT)

T∏
t=1

pθ (xt−1 | xt) ,

pθ (xt−1 | xt) := N (xt−1;µθ (xt, t) ,Σθ (xt, t)) ,

(7)

where µθ and Σθ are optimized. The denoising model
is trained with the variational lower bound of the log-
likelihood.

Eq(x0) [− log pθ (x0)] ≤ Eq(x0:T)

[
− log

pθ (x0:T)

q (x1:T | x0)

]
=: L.

(8)
The loss term L can be rewritten as Eq 1 in manuscript.

L = −pθ(x0|x1)+
∑
t

DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))

(9)

Both two terms compared in the KL divergence are
Gaussians, i.e.,:

q (xt−1 | xt,x0) = N
(
xt−1; µ̃t (xt,x0) , β̃tI

)
,

pθ (xt−1 | xt) := N (xt−1;µθ (xt, t) ,Σθ (xt, t)) ,
(10)

where µ̃t (xt,x0) :=
√
ᾱt−1βt

1−ᾱt
x0 +

√
αt(1−ᾱt−1)

1−ᾱt
xt and

β̃t :=
1−ᾱt−1

1−ᾱt
βt. DDPM fix Σθ (xt, t) = σ2

t I during train-
ing, where σ2

t is set to be βt or β̃t. In our experiments, we
set σ2

t = βt.

Optimization. Models can be trained in the reverse pro-
cess to predict the mean value of xt−1, i.e. µt. Alterna-
tively, by modifying the parameterization, it is also possi-
ble to train the model to predict x0 or ϵt, as demonstrated
in [17]. The original DDPM [17] predicts ϵt. In this case,
the training term is performed as follows, utilizing the repa-
rameterization trick [19] and empirical simplification [17]:

Lsimple := Et,x0,ϵ

[∥∥ϵt − ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2
2

]
,

(11)
where ϵt ∼ N (0, I) and t is uniformly sampled between 1
and T .

In our experiments, we predict x0 for more stable train-
ing. The loss function is modified as:

Lx0 := Et,x0,ϵ

[∥∥x0 −Genθ

(√
ᾱtx0 +

√
1− ᾱtϵ, t

)∥∥2
2

]
,

(12)
where Genθ is the network to be optimized.

Inference. After training, started from an initial noise
map xtmax ∼ N (0, I), new textures can be then generated
via iteratively sampling from pθ (xt−1 | xt), using the fol-
lowing equation:

xt−1 = µ̃t + σtz, (13)

where z ∼ N (0, I). In particular, we predict the x0, so that
the sampling process can be modified as:

xt−1 =

√
ᾱt−1βt

1− ᾱt
x̂0 +

√
αt (1− ᾱt−1)

1− ᾱt
xt + σtz

=

√
ᾱt−1βt

1− ᾱt
Gθ (xt, t) +

√
αt (1− ᾱt−1)

1− ᾱt
xt + σtz.

(14)

Figure 9. The image-conditional texture generation of our method. Our method is adaptable to craft textures guided by singe-view images.
The gray boxes represent image conditions.

2. Network Architecture
We construct TexOct as a U-Net structure, where the ini-
tial input tensor is denoted as x0 ∈ RN×3, with N rep-
resenting the number of octree nodes. We first employ an
input-embedding layer (Octree convolution) that transforms
it into a tensor xinput ∈ RN×32. Then, the input tensor
xinput is passed through the U-Net architecture. The chan-
nel numbers for each level of the U-Net are specified in Ta-
ble 4. Finally, the output of U-Net is passed through an out-
embedding layer to obtain the final output xout ∈ RN×3.

3. User Study Details
We randomly select 25 pairs of renders for each category,
comparing Point-UV [43] and our method. In total, there
are 100 pairs. To better visualize the samples, we render
multi-view images for those objects from 4 preset view-
points. After the samples are prepared, we ask the partic-
ipants to pick the sample from those pairs that is more re-
alistic and finer. To avoid biases and cheating in this user
study, we shuffle the pairs so that there is no positional hint
of our method. In the end, we gather 2000 responses from
20 participants to calculate the preferences.

Block Type Level In-Channels Out-Channels

Encoder

0 32 32
1 32 64
2 64 128
3 128 128

Middle 0 128 128
1 128 128

Decoder

0 128 128
1 128 64
2 64 32
3 32 32

Table 4. Details of TexOct.

4. Image-conditional Generation

In this section, we additionally showcase our method’s abil-
ity to generate textures conditioned on a single-view im-
age. We conduct our experiments on the chair and table
categories. For the image condition, we randomly render
a view from the ground-truth mesh [43]. To infuse the
network with image-specific information, we use the pre-

Methods Average Text-Chair Text-Table Image-Chair Image-Table
FID↓ KID↓ FID↓ KID↓ FID↓ KID↓ FID↓ KID↓ FID↓ KID↓

Point-UV (1-Stage)* [43] 22.55 0.98 18.05 0.71 17.77 0.60 23.64 1.18 30.72 1.44
Point-UV (2-Stage)* [43] 10.12 0.21 8.28 0.15 9.16 0.10 11.49 0.37 11.56 0.21
Ours 7.54 0.08 8.11 0.11 7.54 0.06 7.85 0.11 6.67 0.04

Table 5. Comparison against Point-UV [43] in the context of conditional generation. “*” denotes that we obtain the results by using the
official code.

Figure 10. Additional results of text-conditional generation.

trained vision-language model CLIP [26] to extract the cor-
responding embedding form the given image. Figure 9
demonstrates that our method succeeds in generating tex-
tures that align well with the given images.

5. Additional Results

In order to further showcase the effectiveness of our
method, we present additional results.

Quantitative evaluations. Additionally, in the context
of conditional generation, we conduct a quantitative com-
parison between our method and Point-UV [43]. Specifi-
cally, we adopt a unified evaluation protocol as described
in Section 4.2. We report the FID and KID in Table 5.
Our method outperforms Point-UV [43] by a clear margin.
These improvements indicate that our method excels at gen-
erating highly realistic textures.

Qualitative evaluations. We provide additional re-
sults of text-conditional and unconditional generation in
Figure 10 and Figure 11, respectively. The generated re-
sults further validate the effectiveness of our method. The
texture produced by our approach is detailed and realistic,
aligning closely with the text descriptions in context of text-
conditional generation.

Inference time. We conduct a comparison of the infer-
ence time between Point-UV [43], Text2Tex [8], and our
method. The evaluation is performed under identical hard-
ware conditions, specifically using a Tesla A-100 GPU. We
focus solely on the time required to generate a single in-
stance of the final texture, excluding any time spent on sav-
ing intermediate results. Specifically, Point-UV [43] ex-
hibits an inference time of 30 seconds, while Text2Tex [8]
requires 6 minutes. In contrast, our method achieves the
same task in just 5 seconds, showcasing its efficiency.

Figure 11. Additional results of unconditional generation.

