
TexVocab: Texture Vocabulary-conditioned Human Avatars

Supplementary Material

A. OverView
In Sec. B, we display more results of the synthesized avatar
and geometric avatar. In Sec. C and Sec. D, we present more
implementation details and how we conduct experiments,
respectively.

B. More Results
B.1. Animation Results

Fig. A4 shows more animation results of different
datasets. Fig. A5 displays animation results of differ-
ent method on AIST++ [5] dataset. The comparisons
against results from PoseVocab and results from NeRF
MLP with pose further demonstrate the generalization
of our method. Fig. A6 displays more anination re-
sults of different encoding methods(global-pose embed-
ding, joint-structured embedding, body-part-wise embed-
ding) on AMASS Dataset [11]. For more animation results
and comparisons against other methods such as ARAH [15],
TAVA [6] and PoseVocab [7], please refer to the supplemen-
tary videos.

B.2. Geometric Results

Benefiting from VolSDF [17], our method can also pro-
duce detailed geometric results as shown in Fig A1. The
geometry results can also serve as priors to sample points
near the surface in rendering to accelerate the training pro-
cedure.

C. Implementation Details
C.1. Network Architecture

In our method, we use a CNN as the image encoder to
extract features of the texture images, and we use a NeRF
MLP to decode the 3D character. The architecture of the
NeRF MLP is shown in Fig. A2. For the image encoder, fol-
lowing PixelNeRF [18], we use the ResNet34 [3] backbone
pre-trained on ImageNet for our experiments. Features are
extracted prior to the first 3 pooling layers, upsampled using
bilinear interpolation, and concatenated to form latent vec-
tors of size 256 aligned to each pixel. Actually, changing the
backbone of the network does not make much difference to
the rendering results.

The number of nearest key body parts in KNN is K = 4,
the number of key body parts equals to 0.3× T1, which can
cover most of the appearances of training poses. And the
resolution of the obtained texture images is 512 × 512. For
the amount of training frames T1, please refer to Sec. D.1.

Figure A1. Geometric results of our method.

C.2. Comparisons

For animation results of ARAH [15], TAVA [6], AniN-
eRF [13] and PoseVocab [7], we use the code released by
authors. For results of NeuralActor [9], we borrow the re-
sults reported in the technical paper and presented in the
video.

D. Experimental Details

D.1. Datasets

In our experiments, we use 6 sequences of multi-
view videos from THUman4.0 dataset [20], ZJU-MoCap
dataset [14] and DeepCap dataset [2] for training and eval-
uation. We also use AMASS dataset [11] and AIST++
dataset [5] for novel pose syhthesis.

THUman4.0 Dataset. We use sequence ’subject00’,
’subject01’ and ’subject02’ in THUman4.0 Dataset [20],
which are all captured from 24 cameras, and contain 2500,
5060 and 3110 frames respectively. Each frame also pro-
vides SMPL-X [12] registration. We use the first 2000
frames of all the cameras for training, and the rest are for
testing.

ZJU-MoCap Dataset. We use sequence ’Core-
View 313’, ’CoreView 394’ in ZJU-MoCap Dataset [14].
. ’CoreView 313’ is captured by 21 cameras, while ’Core-
View 394’ is captured by 23 cameras. Each frame provides
SMPL [10] registration. We both use the former 500 frames
of all the cameras for training.

DeepCap Dataset. We use sequence ’lan’ in DeepCap
Dataset [2], which is captured from 11 cameras and con-
tains around 33600 training frames and around 14200 test-
ing frames. Each frame provides SMPL-X [12] registration.
We use all the cameras and sample every 10 frames in the



Figure A2. Architecture of our network.

training set for training, i.e., the training dataset contains
about 3360 poses.

Testing Dataset. We use several sequences from
AMASS [11] and AIST++ [5] dataset for novel pose sy-
hthesis to evaluate the generalization of our method.

D.2. Training Loss

The training losses include a color loss, a perceptual
loss, a mask loss and the Eikonal loss.

Color Loss. Color loss measures the MSE loss between
the rendered image and ground-truth pixel colors:

Lcolor =
∑

r∈R
∥C(r)− C∗(r)∥22 (1)

whereR is the set of sampled rays from the rendered view,
and C(r) and C∗(r) are the rendered and true pixel colors,
respectively.

Mask Loss. Mask loss measures the MAE loss between
the mask of rendered image and ground-truth:

Lmask =
∑

r∈R
∥M(r)−M∗(r)∥22 (2)

where M(r) and M∗(r) are the rendered and ground-truth
mask values, respectively. The mask loss supervises the oc-
cupancy values of the rendered pixel.

Eikonal Loss. Eikonal loss [1] encourages the geometry
fields to approximate a true signed distance function [17]:

Leikonal = E(∥∇xs(x, f(Θ, x))∥22 − 1) (3)

where s(·) is the MLP-based function that maps a 3D posi-
tion xc and pose feature f(Θ, xc) to the SDF value.

Perceptual Loss. The perceptual loss Lperceptual is
widely used in NeRF training [7, 20, 21], which leads to
better recovery of high-frequency details like the clothed
wrinkles and thin lines [19]. We choose VGGNet as the
backbone to calculate the learned perceptual image patch
similarity (LPIPS):

Lcolor =
∑

p∈P
∥V GG(C(r))− V GG(C∗(r))∥22 (4)

where P is the set of sampled patches from the rendered
view, and C(r) and C∗(r) are the rendered and true patch
colors, respectively.

Finally, we calculate the weight sum to optimize the net-
work:

L = λcolorLcolor + λmaskLmask

+ λperceptualLperceptual + λeikonalLeikonal

(5)

where the λs are loss weights.



D.3. Training Details

We train the network using the Adam [4] optimizer with
a batch size of 4 for 40 epochs. The initial learning rate is
5×10−4 and decays by multiplying 0.9 every 20k iterations.
The training procedure takes about 1 ∼ 2.5 days on 4 RTX
3090 cards varying different multi-view video sequences.
The training procedure contains three stages. In the first
stage, we set λcolor = 1, λmask = 1, λeikonal = 0.1 and
λperceptual = 0 during the first 6 epochs. We randomly
sample 1024 rays on the training views, 80% of which are
inside the mask image. For each ray, we sample 64 points
within the SMPL bounding box. Under the supervision of
the mask and color losses, a plausible geometry for each
training frame can be learned. Then we extract 3D meshes
using Marching Cubes [16] for all the training frames by
querying the SDF value of each voxel in a coarse 3D vol-
ume that contains the posed human, and then render depth
maps of all the training frames. In the following training
procedure, we use depth-guided sampling by only sampling
32 points near the surface based on the rendered depth map.
The depth-guided sampling strategy not only accelerates the
training process, but also encourages the network to focus
on modeling the dynamic appearance of valid regions. In
the second stage, from the 6th to the 20th epoch, we set
Eikonal loss to 0 for faster training. In the third stage, we
sample patches with a resolution of 64 × 64 on the training
views and enable the perceptual loss with the perceptual set
to 0.1 until the end of the training procedure.

D.4. Animation Details

We utilize depth-guided sampling benefiting from the re-
sults of geometric avatars. Given a novel pose, we first ob-
tain the SMPL model and allocate a sparse volume with
a resolution of 128 × 128 × 128 that contains the posed
SMPL. Then, we predict SDF values of voxels near the
SMPL surface to extract the geometric avatar using March-
ing Cubes [16]. With the explicit geometric result, we can
render it to the camera view to obtain a depth map. In the
following volume rendering, we can use depth-guided sam-
pling, which means we only need to evaluate the colors of
pixels inside the body mask on the depth map. However,
the depth maps may be inaccurate on boundaries of self-
occluded regions, producing background colors. For these
pixels, we re-sample points within the balls generated by
SMPL vertices similar to [9]. Such a strategy can remark-
ably improve the rendering speed and it can take around 6
seconds to render the human appearance at a resolution of
1150 × 1330.

For sequential animation, e.g., the animation results
shown in the supplementary video, we use a sliding win-
dow of length 5 to consider embeddings of adjacent frames
in order to guarantee the temporal consistency of the results.

Figure A3. Image (d) and corresponding texture maps using 3
views(a), 4 views(b) and dense views(c).

E. Limitations and Future Work

In this section, we further discuss the limitations of our
method and the future work.

Temporal robustness. Actually, our method loses some
temporal consistency compared with PoseVocab [7]. This
is because the KNN neighbors in the query cannot be guar-
anteed to be temporally continuous. Our method and Po-
seVocab both suffer from this, but the values of feature
lines of PoseVocab can be optimized to lie in a small range,
thus producing more stable temporal animation. In contrast,
the texture features in our method are of much higher fre-
quency, yielding occasional temporal flickers sometimes.

Sparse Views. The back-projection in Sec.4.2 relies on
dense views of multi-view videos. As shown in Fig. A3, the
texture maps might be incomplete using 3 or 4 views be-
cause of the occlusion. For instance, when the arm is placed
in front of the body, part of the body may be occluded.

Body Template and Loose Clothes. When we back-
project the image evidence, we use a naked SMPL in-
stead of a person-specific template. Since there are dif-
ferences between SMPL and clothed humans, as shown in
Fig. A3(c), the cloth pattern (specifically, the “D” letter on
the hoodie) may be distorted after back-projecting. Also,
the usage of SMPL UV parameterization in back-projection
constrains the character to wear tight clothes, our approach
cannot handle the loose clothes like long dresses. The prob-
lem may be dealt with a person-specific parametric template
like [8] instead of a sole SMPL mesh. And we leave it for
future work.



Figure A4. Animation examples on 6 sequences of multi-view videos.



Figure A5. Animation results on AIST++ [5] dataset. We compare our animation results against results produced by NeRF with Pose, and
PoseVocab.(a) Driving poses, (b) NeRF MLP with pose, (c) Posevocab, (d) ours.

Figure A6. Animation results on AMASS [5] dataset. We compare our animation results against different encoding strategy. We show
synthesized images of (a) global pose, (b) joint-structured, and (c) body-part-wise embedding.
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