
Appendices
A. Method Details
A.1. PQ-VAE

The PQ-VAE processes motion sequences, denoted as M1:N ,
utilizing an encoder-decoder architecture tailored for tempo-
ral data [59]. The encoder comprises four residual blocks,
each featuring a series of three temporal convolution layers.
These layers are parameterized with kernel size, stride, and
padding set to 3, 1, and 1, respectively, and are followed
by batch normalization [25] and Leaky ReLU activation
[39] for non-linear transformations. Additionally, temporal
convolutions (kernel size 4, stride 2, padding 1) are placed
between residual blocks to adjust the temporal resolution,
setting the temporal window w to 8. A fully-connected layer
precedes the quantization step, serving dimensionality re-
duction. The decoder mirrors the encoder’s architecture,
ensuring symmetry in information reconstruction.

A.2. Predictor

The Predictor leverages dual condition encoders and a
transformer-based decoder. The audio encoder employs 3
temporal convolution layers (kernel size 4, stride 2, padding
1), followed by batch normalization [25] and Leaky ReLU
activation [39], focusing on audio feature extraction. In
contrast, the motion context encoder utilizes 10 gated con-
volution layers, catering to motion context comprehension
[12, 43]. The transformer-based decoder consists of an em-
bedding layer and six decoder blocks, each integrating a
self-attention layer, a cross-attention layer, and a linear layer,
followed by an AdaIN layer for style normalization. A fully-
connected layer finalizes the structure, adjusting output di-
mensions to match the target motion specifications.

A.3. Refiner

Employing a transformer-based architecture akin to the Pre-
dictor’s decoder (excluding the embedding layer), the Refiner
fine-tunes motion predictions. During training phase, input
to the Refiner combines ground truth (GT) motion Mgt

1:N and
PQ-reconstructed motion Mpq

1:N via:

M1:N = I ⊙Mgt
1:N + (1− I)⊙Mpq

1:N , (8)

where ⊙ denotes element-wise multiplication. The Refiner
outputs refined motion Mr

1:N , guided by input audio A1:N ,
mask I and speaker identity D1:N :

Mr
1:N = Refiner(M1:N ;A1:N , I,D1:N ). (9)

The Refiner is optimized using the loss function Lrefine,
which is formulated as follow:

Lrefine = L1(I ⊙Mgt
1:N , I ⊙Mr

1:N ) + L1(V
gt
1:N−1, V

r
1:N−1).

(10)

Method FGD ↓ MAE ↓ BC (GT=0.847)
Habibie et al. 44.60 8.59 0.964 (GT+0.117)
TalkShow 6.60 9.39 0.885 (GT+0.038)
ProbTalk (Ours) 3.98 7.79 0.818 (GT-0.029)

Table 7. More metrics.
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Figure 5. User study.

FGD↓ BC Diversity↑ MSE↓ LVD↓
Ground Truth 0 6.856 13.05 0 0
FaceFormer [13] - - - 7.787 7.593
CodeTalker [56] - - - 8.026 7.766
S2G [15] 28.15 4.683 5.971 - -
Trimodal [61] 12.41 5.933 7.724 - -
HA2G [36] 12.32 6.779 8.626 - -
DisCo [33] 9.417 6.439 9.912 - -
CaMN [34] 6.644 6.769 10.86 - -
DiffStyleGesture [57] 8.811 7.241 11.49 - -
Habibie et al. [21] 9.040 7.716 8.213 8.614 8.043
TalkShow [59] 6.209 6.947 13.47 7.791 7.771
EMAGE [35] 5.512 7.724 13.06 7.680 7.556
ProbTalk (Ours) 6.170 8.099 10.43 8.990 8.385

Table 8. Quantitative evaluation on BEAT-X.

Here, L1 is L1 reconstruction loss, while V gt
1:N−1 and

V r
1:N−1 refer to the velocity of GT and generated holistic

body motion, respectively.

B. More Comparison

More Metrics. We add the Mean Absolute Error (MAE)
to quantitatively assess the difference between the ground
truth and the motion generated by our model. Additionally,
we introduced the Beat Consistency (BC) metric to evaluate
the synchronization between the generated motion and the
corresponding audio. The outcomes of these evaluations
are presented in Tab. 7. The superior performance in both
the MAE and BC metrics demonstrates that our model’s
generated outputs exhibit the highest degree of fidelity to the
ground truth.

User Study. We conduct a user study to compare the
realism and synchronization of our method with existing
works. We randomly sample 20 audios. 12 participants were
asked to rank videos generated by three methods based on
their realism and synchronization. Results in Fig. 5 show
that our method outperforms the others in both realism and
synchronization.

Experiments on Beat-X Dataset. Our experimental eval-
uation conducted on the Beat-X dataset [35] is shown in
Tab. 8. We follow the experimental configuration from [35],
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Figure 6. Motion sequences selected based on their minimal Mean Squared Error (MSE), incorporating symmetry by treating movements of
corresponding body parts (e.g., left and right hands) as equivalent in the evaluation.

employing data from Speaker 2 for model training and vali-
dation. This ensures a direct comparison with benchmarks
and aligns with prior research. However, it is important to
acknowledge the potential for overfitting due to the limited
data. As such, the outcomes of these experiments should be
interpreted as indicative rather than definitive.

More Qualitative Comparison. To further validate the
accuracy of the generated motions, we generate 32 samples
using each method. Subsequently, we select the samples
exhibiting the minimal Mean Squared Error (MSE) for each
method. The corresponding results are presented in Fig. 6.
The results demonstrate that our method generates a closer
approximation to the true motion sequences, thus highlight-
ing the enhanced accuracy of our generated samples.


	. Introduction
	. Related Work
	. Human Motion Generation
	. Co-Speech Motion Generation

	. Method
	. Method Overview
	. Unified Probabilistic Motion Generation
	Motion PQ-VAE
	Non-autoregressive Modeling for Prediction
	Motion Detail Refinement

	. Multi-Modal Conditioning

	. Experiments
	. Dataset
	. Experimental Setup
	. Qualitative Analysis
	. Quantitative Analysis
	. Sensitive Analysis

	. Conclusion
	Appendices
	. Method Details
	. PQ-VAE
	. Predictor
	. Refiner

	. More Comparison

