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Supplementary Material

1. Additional Implementation Details
1.1. Multi-View 3D Auto-Labeling

1.1.1 Cuboid SDF

SDFs for primitives such as spheres and cuboids can be de-
rived theoretically. Here, we introduce the SDF for cuboids.
First, we define the cuboid in a local coordinate system with
a dimension d ∈ R3

+ as the following set of vertices Cd:
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Accordingly, the local SDF B̄(·;d) for the cuboid Cd can be
derived as follows:

B̄(p;d) = ∥max(q, 0)∥2 +min(m, 0) , (2)
q = |p| − d ,

m = max(qx, qy, qz) .

Next, we transform the cuboid SDF from the local coor-
dinate system to the global one. In general, given a sur-
face whose SDF is denoted by F̄(·), the SDF F(·;R, t) for
the surface transformed by a rigid transformation (R, t) ∈
SE(3) is given by:

F(p;R, t) = F̄(RT (p− t)) . (3)

Therefore, the global cuboid SDF B(·;d, ℓ,R) parameter-
ized by a dimension d ∈ R3

+, location ℓ ∈ R3, and orien-
tation R ∈ SO(3) can be derived by transforming the local
cuboid SDF B̄(·;d) from the local coordinate system to the
global one with the rigid transformation (R, ℓ), as follows:

B(p;d, ℓ,R) = B̄(RT (p− ℓ);d) . (4)

1.1.2 Symmetric Shape Prior

Since the shapes of vehicles are often horizontally sym-
metrical in the local coordinate system, we incorporate this
shape prior to each instance SDF in our proposed multi-
view 3D auto-labeling. Given a local SDF F(·), its hori-
zontally symmetrical version

←→
F (·) is given by:

←→
F (p) = F([|px|,py,pz]) . (5)

This symmetric shape prior has the advantage that even if
only one of the left or right sides of an instance is visible,
the shape of the invisible part can be shared with the other
instances via the hypernetwork.

1.1.3 Frame Sampling

Since our loss functions are based on multi-view 2D super-
vision, how to sample source frames S for each target frame
t is important. To sample source frames, each of which in-
cludes as many instances in the target frame as possible,
we sample source frames based on the perspective of what
percentage of instances in the target frame are included in
each source frame. Therefore, we first define a set of candi-
date source frames S̃(η) as the set of frames with the max-
imum number of elements, where the percentage of target
instances in every source frame is greater than or equal to a
certain threshold η as follows:

S̃(η) = max
|·|

({N ∋ t | ∀s ∈ N :
|It ∩ Is|
|It|

≥ η}) , (6)

where It and Is denote the sets of instance IDs of the target
and source frames, respectively. max|·| denotes the max op-
eration that selects the set with the maximum number of ele-
ments. In our experiments, we set empirically η = 0.5, bal-
ancing the number of viewpoints and convergence time. In
practice, we further sample a fixed number of frames from
S̃(η) as evenly as possible due to implementation consid-
erations to avoid large differences in the number of source
frames between scenes. We sample 16 frames from S̃(0.5)
and use it as the final set of source frames S.

1.1.4 Ray Sampling

For each iteration in stochastic gradient descent, as in NeRF
[2], we randomly sample a batch of rays used for volumetric
rendering. However, in the case where the instance masks
are given, it is inefficient to sample rays far away from any
instance in the scene. Therefore, we propose an efficient ray
sampling algorithm based on the instance masks. First, for
each source frame i ∈ S , we extract the polygon for each
instance by a contour finder. Then, we theoretically derive
the 2D SDF Pin(·) for the n-th polygon in frame i. Then,
we derive the 2D SDFPi(·) for the union of all the polygons
in frame i as Pi(p) = min(Pi1(p), . . . ,PiNi

(p)), where
Ni denotes the number of target instances in frame i. Then,
we generate a soft instance mask Mi via soft rasterization
[1] as follows:

Mi(p) = Φ(−Pi(p)/τ) , (7)

where p ∈ R2 denotes a pixel coordinate, Φ(·) denotes the
Sigmoid function, and τ denotes the temperature parameter



that controls the degree of relaxation, indicating that as it
becomes higher, rays farther away from each instance are
sampled. Then, we normalize the soft instance mask Mi

across all the source frames S as follows:

M̃i(p) =
Mi(p)∑

j∈S
∑

q Mj(q)
. (8)

Finally, we sample a batch of rays from the multinomial dis-
tribution based on the normalized soft instance mask M̃i(·).
This mechanism enables us to intensively sample rays that
are likely to hit the surface of each instance.

1.2. Monocular 3D Object Detection

To compare our method and Autolabels [5] with WeakM3D
[3], we modify the architecture of WeakM3D so that it
can be trained in a supervised manner using pseudo labels.
More specifically, we train dimension and confidence heads
in addition to the existing location and orientation heads
using the same supervised loss as MonoDIS [4]. We call
this model S-WeakM3D. Note that for the comparison with
methods other than WeakM3D, we do not modify the archi-
tectures and loss functions.

1.2.1 Architecture

Dimension Head WeakM3D utilizes prior knowledge
about the typical dimension for category Car and freezes
it by setting the width, height, and length to 1.8, 1.6, and
4.0, respectively. This is because relying only on the 3D
alignment loss utilizing LiDAR point clouds struggles to
optimize the location and dimension parameters jointly. In
order to make full use of the pseudo labels generated by the
proposed auto-labeling, we modify the original network of
WeakM3D by adding a simple dimension head, which has
the same architecture as the original location head, to esti-
mate the dimension of each instance as follows:

d̂ = dmin + (dmax − dmin)⊙ Φ(Hdim(F ;ψdim)) , (9)

where dmin = [1.5, 1.5, 3.0] and dmax = [2.0, 2.0, 5.0] de-
note the pre-defined minimum and maximum dimensions,
respectively. As we assume we cannot access any 3D
bounding boxes in the dataset, they are determined based on
not the statistics of the dataset but the dimensions of typical
production cars. F denotes the RoI-aligned feature maps
for each instance,Hdim(·;ψdim) denotes the dimension head
parameterized by ψdim, and Φ(·) denotes the Sigmoid func-
tion. We implement the dimension head as an MLP with
two hidden layers, each of which has 256 channels.

Confidence Head Following MonoDIS [4], we train the
network to estimate not only the 3D bounding box but also a
confidence score that represents the quality of the predicted

3D bounding box in a self-supervised manner. We add a
simple confidence head, which has the same architecture as
the original location head, to estimate the confidence of the
predicted 3D bounding box as follows:

ĉ = Φ(Hconf(F ;ψconf)) , (10)

where Hconf(·;ψconf) denotes the confidence head parame-
terized by ψconf. We implement the confidence head as an
MLP with two hidden layers, each of which has 256 chan-
nels. We train the confidence head with the self-supervised
loss explained in Sec. 1.2.2. The output confidence score is
further multiplied by the classification score output by the
off-the-shelf 2D detector and used as the final score to filter
low-quality predictions during inference.

1.2.2 Loss Functions

Distentangled loss For bounding box regression, we em-
ploy the same disentangled loss as MonoDIS [4] as follows:

Lbox(d̂, l̂, θ̂,d, l, θ) = ∥B(d̂, l, θ)−B(d, l, θ)∥H+

∥B(d, l̂, θ)−B(d, l, θ)∥H+

∥B(d, l, θ̂)−B(d, l, θ)∥H , (11)

where d̂, l̂, and θ̂ denote the predicted dimension, loca-
tion, and orientation, respectively, and d, l, and θ denote
the ground truth dimension, location, and orientation, re-
spectively. B(d, l, θ) denotes the 3D bounding box de-
coded from dimension d, location l, and orientation θ. Ac-
tually, we minimize the confidence-based weighted regres-
sion loss L̃box instead of the original regression loss Lbox, as
explained in Sec. 3.2.2 in the main paper.

Confidence Loss For confidence learning, we employ the
same self-supervised loss as MonoDIS [4] as follows:

Lconf(ĉ, d̂, l̂, θ̂,d, l, θ) = BCE(ĉ, c) , (12)

c = exp(−⌊Lbox(d̂, l̂, θ̂,d, l, θ)⌋) , (13)

where ĉ denotes the predicted confidence, BCE(·, ·) denotes
the binary cross entropy, and ⌊·⌋ denotes the stop gradient
operation whereby the gradients are not propagated through
the box regression loss Lbox.

2. Additional Evaluation Results
2.1. Monocular 3D Object Detection

2.1.1 Weakly Supervised Setting

Tab. 1 shows the additional evaluation results of our method
compared with the existing weakly supervised and fully



Table 1. Evaluation results of monocular 3D object detection on the KITTI-360 validation set. ∗Reproduced with the official code. †CAD
models are used as extra data. ‡M(D) indicates that detection model D is employed for model-agnostic method M .

Weak Supervision Full Supervision APBEV/AP3D@0.3 APBEV/AP3D@0.5

Method LiDAR Masks 3D Boxes Easy Hard Easy Hard

WeakM3D* [3] ✓ ✓ 49.38/44.26 41.53/34.91 17.25/4.64 13.87/3.45
Autolabels*†‡ [5] (S-WeakM3D) ✓ ✓ 55.55/10.04 51.59/8.50 36.06/1.56 28.12/1.13

VSRD‡ (S-WeakM3D) ✓ 62.77/57.28 57.35/51.79 31.84/29.50 30.04/24.93
VSRD‡ (MonoFlex) ✓ 70.04/65.09 60.53/55.75 50.59/32.52 48.83/25.70

VSRD‡ (MonoDETR) ✓ 54.97/50.13 49.81/46.13 38.09/29.52 31.68/24.25

MonoFlex* [7] ✓ 80.47/78.15 72.97/68.74 66.81/60.46 57.37/49.38
MonoDETR* [6] ✓ 73.21/72.67 68.58/66.27 61.47/58.35 54.53/49.91

Table 2. Evaluation results of semi-supervised monocular 3D ob-
ject detection on the KITTI validation set.

APBEV/AP3D@0.7

Method Ratio Easy Moderate Hard

MonoFlex [7] 1.00 28.17/23.64 21.92/17.51 19.07/14.83

VSRD (MonoFlex)

0.00 3.65/0.34 2.51/0.23 1.98/0.21
0.25 24.55/14.62 17.74/10.69 15.67/8.95
0.50 29.38/17.44 21.72/12.40 18.69/10.65
0.75 34.32/23.79 24.87/17.60 21.45/14.97

supervised methods. As with Tab. 4 in the main pa-
per, our method demonstrates a significant superiority over
WeakM3D [3] across all the metrics while eliminating the
need for LiDAR points for 3D supervision. Moreover, the
detector trained on the pseudo labels generated by the pro-
posed auto-labeling outperforms that trained on the pseudo
labels generated by Autolabels [5].

2.1.2 Semi-Supervised Setting

In addition to MonoDETR [6], we also conduct the same
experiments as Sec. 4.4.2 in the main paper employing
MonoFlex [7]. Tab. 2 shows the performance of the de-
tector pre-trained on the KITTI-360 dataset in a weakly su-
pervised manner with the proposed auto-labeling and then
fine-tuned on a subset of the KITTI dataset in a supervised
manner. As with Tab. 5 in the main paper, the zero-shot per-
formance is quite low due to the characteristic that monoc-
ular depth estimation is greatly affected by the differences
in camera parameters, but the performance of the detector
fine-tuned on only 75% of the labeled data significantly out-
performs that trained on the whole data from scratch, high-
lighting the broad applicability of our method.

3. Additional Visualization Results

Figs. 1 to 4 show the additional visualization results of
the proposed multi-view 3D auto-labeling, weakly super-
vised monocular 3D object detection, and semi-supervised

monocular 3D object detection employing MonoDETR [6]
and MonoFlex [7], respectively. In particular, as can be seen
from Fig. 2, it is worth noting that WeakM3D [3] struggles
to estimate the orientations of laterally moving objects ac-
curately as it assumes that most objects are facing forward,
whereas our method leverages the pseudo labels generated
by the proposed auto-labeling as 3D supervision without
any priors, leading to more accurate orientation estimation.
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Figure 1. Visualization results of the optimized 3D bounding boxes (1st row) and rendered instance masks (2nd row). We assign a unique
color to each instance, and each pixel is colored as the weighted summation based on the rendered soft instance label.

(a) WeakM3D

(b) Autolabels

(c) VSRD

Figure 2. Visualization results of weakly supervised monocular 3D object detection compared with Autolabels [5] and WeakM3D [3]. The
ground truth and predicted bounding boxes are drawn in red and blue, respectively.



(a) MonoDETR

(b) VSRD (50%)

(c) VSRD (75%)

Figure 3. Visualization results of semi-supervised monocular 3D object detection compared with MonoDETR [6]. The ground truth and
predicted bounding boxes are drawn in red and blue, respectively.

(a) MonoFlex

(b) VSRD (50%)

(c) VSRD (75%)

Figure 4. Visualization results of semi-supervised monocular 3D object detection compared with MonoFlex [7]. The ground truth and
predicted bounding boxes are drawn in red and blue, respectively.
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