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Due to the limited space in the main text, we provide
more details in the Supplementary Material. This supple-
mentary material is comprised of the following sections.

Sec. 1 presents the detailed network structure of our pro-
posed approach.

Sec. 2 includes descriptions of different datasets used for
model evaluation.

Sec. 3 conducts supplementary experiments both in qual-
itative and quantitative views. We also attach a video clip
for obtaining more intuitive comparison between SOTA
methods.

1. Method Details

1.1. Reconstruction stage

We give a more detailed network structure diagram in the
method section of the main text, as shown in Fig. 1.
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Figure 1. Detailed presentation of the reconstruction network for
obtaining the event-based reference.

We adopt an U-shaped network [6] that utilizes pure
events for the synthesis of the event-based reference at
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Figure 2. Detailed presentation of the feature Encoders adopted in
the synthesis and refinement stages.

the interpolated frame position, circumventing the effect of
poor keyframe quality on the interpolation results.

1.2. Synthesis stage

The structure of feature encoders (EI , EE , ER) in the synthe-
sis stage is shown in Fig. 2, where we take EI as an example.
The symbol F 0,1,2

m denotes features obtained from the net-
work at different scales that are supposed to be fed into the
E-PCD module. The {Chan i|i = 0, 1, 2, 3} in the figure
represents output channels of the convolutional layer, and s
denotes the stride. In specific, output channels are [16, 32,
64, 128], [16, 32, 64, 96] and [8, 16, 32, 64] for EI , EE and
ER, respectively.

Besides, we include four convolutional blocks after E-
PCD modules to fuse the bidirectional interpolating fea-
tures, where the first three consists of a normal 3× 3 Conv
followed by a LeakyRelu activation function with output
channel as 64. The last one holds the similar architecture as
the first three blocks but with output channel of 3.

1.3. Refinement stage

We describe detailed network structure of the refinement
stage in this section. As illustrated in the main manuscript,
the refinement stage comprises of two parts denoted as
“Three Different Encoders” and “Transformer Decoder”.
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Specifically, “Three Different Encoders” represent feature
encoders that take {I0, I1, E0→1, Îτ} as input. We formu-
late this process in Eq. (1).

F 0,1,2
m,∗ = E∗

I (Im),m ∈ {0, 1},
G0,1,2

∗ = E∗
E(E0→1),

V 0,1,2
∗ = E∗

pred(Îτ )),

(1)

where the structure of these encoders ({E∗
I , E∗

E , E∗
pred}) are

similar to feature encoders utilized in the synthesis stage
and output channels of their inside layers are set as [8, 16,
32, 64].

After obtaining encoded features from various views
(F 0,1,2

m,∗ , G0,1,2
∗ , V 0,1,2

∗ ), we input them into an interactive
Transformer-based decoder (Inspired by [4]). To gain fea-
ture refinement at multi-scale, we convey a multi-level
Transformer-based decoding to achieve the final interpo-
lation. We illustrate the specific structure of the decoding
block at i-th level in Fig. 3 and formulate the input con-
struction of this block in Eq. (2).

Fi
F = C(F i

m,∗, G
i
∗),

Fi
R = C(V i

∗ , F
i
m,∗, G

i
∗, χ

i−1),

Fi
E = C(V i

∗ , G
i
∗),

(2)

where the input feature FR at i-th level is obtained by fusing
the output of previous layer (χi−1). A total of three different
scales of Iτ can be obtained for training, and the generation
and computation of Q,K, V follows the standard attentive
learning method proposed in [2].

2. Datasets Details
Synthesis Datasets. As mentioned in the main paper, we
generate events on four publicly available VFI datasets. The
first dataset is Vimeo90K-Septuplet dataset [9], which con-
tains 62450 8-frame scenes (only training scenarios) with a
size of 448×256. The second dataset is Vimeo90k-Triplet
dataset [9], which contains 3781 3-frame scenes (only test
scenarios) with a size of 448×256. The third dataset is Go-
Pro dataset [5], which contains 22 different scenes with a
size of 1280×720. The third dataset is SNU-FILM [1],
which consists of four levels representing the hardness of
performing interpolation: easy, medium, hard, and extreme,
representing different numbers of skipped frames from 1 to
15. It consists of 31 different scenarios.
Real Event Datasets We conduct evaluations on two real-
event datasets. The first dataset is the High Quality Frames
(HQF) dataset [7] of 14 different scenes captured by the
DAVIS-240C event camera, which has a resolution of
240×180. The second dataset is the HS-ERGB dataset [8]
of 15 different scenes captured by the Prophesee Gen4 event
camera, which has a larger resolution 800×856.

Table 1. Ablation study without using grayscale ground truth on
Vimeo90K-Triplet and HS-ERGB (far) datasets.

Grayscale Vimeo90K HS-ERGB (far)
Supervision PSNR SSIM PSNR SSIM
Not Used 37.65 0.965 32.87 0.907

Used 39.17 0.977 33.56 0.921

3. Additional Experiments
3.1. Video Demos

We generate demo videos on the proposed real datasets,
such as HS-ERGB [8] and HQF [7]. Demo videos named
as Video.mp4 include the qualitative comparison with other
SOTA VFI methods.

3.2. Is grayscale ground truth supervision re-
quired?

Due to space constraints, we use the grayscale ground truth
values directly in the main paper for supervision and did
not verify their effectiveness, which we add here, and the
experimental results are shown in Tab. 1. We can observe
from the table that the grayscale supervision provide a large
enhancement w.r.t the optimization effects.

3.3. Threshold settings for erosion operation

We visualize the erosion operation for different threshold
settings, as shown in Fig. 4. We can see that the customized
erosion operation is able to get rid of the effect of event
noise as much as possible and preventing the significant
loss of event data compared to the original erosion operation
(δ = 1). In this work, we select δ as 6 for all evaluations.

3.4. Stress test

An increase in the number of inter-frame skips will exac-
erbate the problem of motion blurring and occlusion, thus
exacerbating the challenge of generating accurate results.
A large number of frame skips will greatly test the robust-
ness of the model to complex motion. With this in mind,
we conducted a challenging stress test of our model using
the HS-ERGB dataset containing 31 frame-hopping inter-
polations, and the results are shown in Fig. 5. It can be
concluded that our method performs better in such extreme
interpolation situations.

3.5. Additional Visual Results

3.5.1 More Visual Results on SNU-FILM dataset

In the Figs. 6 to 8, we show additional qualitative results
of interpolated frames on the SNU-FILM (extreme) dataset.
In the figure, we compare with state-of-the-art frame-based
video frame interpolation methods, UPR-Net-L [3], event-
based video frame interpolation method, TimeLens [8] and
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Figure 3. Detailed presentation of the Transformer Decoder in the synthesis stage. GDFN represents Gated Deconvolutional Feed-
Forward Network designed by [10]. In our works, “dim” is defined as 64 for all decoder scales (e.g., {i = 0, 1, 2})
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Figure 4. Visualization of event masks generated with different
erosion thresholds.

CBMNet-L [4]. We confirm that our method significantly
outperforms other frame and event-based video frame inter-
polation methods.

3.5.2 More Visual Results on HQF dataset

We aim to further validate the advantage in the generaliz-
ability of our proposed method with various scenarios in the
real world. In the Figs. 9 and 10, we show more qualitative
results on the HQF dataset.

3.5.3 More Visual Results on HS-ERGB dataset

In the Figs. 11 to 14, we show additional qualitative results
on the HS-ERGB dataset.
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Figure 5. Qualitative comparison of the stress test, notes that the umbrella actually rotates more than one turn.
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Figure 6. Visual results on the SNU-FILM dataset. (Best viewed when zoomed in.)
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Figure 7. Visual results on the SNU-FILM dataset. (Best viewed when zoomed in.)



the sim-to-real gap for event cameras. In European Confer-
ence on Computer Vision (ECCV), 2020. 2

[8] Stepan Tulyakov, Daniel Gehrig, Stamatios Georgoulis,
Julius Erbach, Mathias Gehrig, Yuanyou Li, and Davide
Scaramuzza. Time lens: Event-based video frame interpo-
lation. In Proceedings of the IEEE/CVF conference on com-
puter vision and pattern recognition, pages 16155–16164,
2021. 2

[9] Tianfan Xue, Baian Chen, Jiajun Wu, Donglai Wei, and
William T Freeman. Video enhancement with task-oriented
flow. International Journal of Computer Vision (IJCV), 127
(8):1106–1125, 2019. 2

[10] Syed Waqas Zamir, Aditya Arora, Salman Khan, Mu-
nawar Hayat, Fahad Shahbaz Khan, and Ming-Hsuan Yang.
Restormer: Efficient transformer for high-resolution image
restoration. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pages 5728–5739,
2022. 3



Input images(overlayed) UPRNet-L TimeLens

CBMNet-L Ours GT

Input images(overlayed) UPRNet-L TimeLens

CBMNet-L Ours GT

Input images(overlayed) UPRNet-L TimeLens

CBMNet-L Ours GT

Figure 8. Visual results on the SNU-FILM dataset. (Best viewed when zoomed in.)
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Figure 9. Visual results on the HQF dataset. (Best viewed when zoomed in.)
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Figure 10. Visual results on the HQF dataset. (Best viewed when zoomed in.)
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Figure 11. Visual results on the HS-ERGB dataset. (Best viewed when zoomed in.)
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Figure 12. Visual results on the HS-ERGB dataset. (Best viewed when zoomed in.)
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Figure 13. Visual results on the HS-ERGB dataset. (Best viewed when zoomed in.)
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Figure 14. Visual results on the HS-ERGB dataset. (Best viewed when zoomed in.)
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