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This document provides more details of our approach
and additional experimental results, which are organized as
follows:
¢ Additional details (§A)
¢ Model details (§B)
¢ Discussion (§C)

A. Additional details

List of Symbols. The below table will be definitely added
into our supplementary material. We will omit unnecessary
subscripts for notational convenience.

Notation ‘ Description ‘ Index
N Number of candidates §3.3
X Volume state space §3.2
g Episodic memory graph §3.3
v Observed viewpoints §3.3
& Navigable connections §3.3
A Local action space §3.3
A* Global action space §3.3
E Instruction embeddings §3.2&3.3; Eq. (5)&(8)
3D volume query §3.1; Eq. (1)
F¥ 2D perspective feature §3.1; Eq. (1)
F¥ 3D volumetric representation §3.1; Eq. (1)&(2)
F9 Height-aware group representation §3.2; Eq. (5)
FP Neighboring pillar representation §3.3; Eq. (7)
G Node embeddings of G §3.3; Eq. (8)
p¥ Local state transition probabilities §3.3; Eq. (4)
pzd Local action probabilities §3.3; Eq. (6)
pY Global action probabilities §3.3; Eq. (8)&(9)

+ Subscript ¢ in the paper denotes the navigation step.
Multi-resolution Labels. In coarse-to-fine VER represen-
tation extraction (§3.1), multi-resolution labels are utilized
to supervise the perception network at each scale. The size
of multi-resolution occupancy voxels are 0.4m, 0.2m, and
0.1m, respectively. The layout estimation and object detec-
tion are also employed at each scale. Fig. Al shows the
coarse-to-fine occupancy prediction.

Visualization. We provide more visualization results on val
unseen of R2R [1] and REVERIE [12]. In Fig. A2, our
agent recognizes the ‘toilet’ and ‘bathtub’, and then finds
the first door easily. We illustrate the 3D layout estimation
in Fig. A3. Given the multi-view images as input, our model
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Figure Al. Visualization of multi-resolution occupancy prediction
(more details in §3.1).
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can capture the 3D geometric information and reconstruct
the room structure.

B. Model Details
B.1. Environment Encoder

Cross-view Attention(CVA). We propose cross-view atten-
tion for 2D-3D sampling (§3.1) and use the camera pro-
jection function P, to obtain the reference points (Eq. 1),
which is formulated as follows:

CVA(Q(QJ,y, Z)7F2d> = DA(Q(I'?ya Z)’Pc(p)a FZd)v (Bl)

where Q(z,y, z) € RP< is located at (z,y, ) position of
Q € RPXXXYXZ p2d ¢ RDixHXW iq the image feature,
and P, employs the camera intrinsic and extrinsic parame-
ters for transformation. DA is the deformable attention [ 14]:

K S
DA(q,p,F) =Y Wi > Ax,W.F(p+0pxs), (B2)

k=1 s=1
where K is the number of attention heads, s indexes a total
of S sampling points, W is the learning weight, Ay, €
[0, 1] is the learnable attention weight, 6pys €R? is the pre-
dicted offset to the reference point p, and F(p + dpys) is
the feature at location p + dprs computed by bilinear inter-
polation. We sample S = 6 points for each query in CVA.
Multi-task Learning. We adopt ViT-B/16 [5] pretrained on
ImageNet as the backbone. The size of the image features
F? are 1280 x 1024 x 768. We train the perception net-
work with a detection head, a layout regression head, and
a multi-class occupancy prediction head using the AdamW
optimizer with a learning rate of 1x 10~* for 500 epoches
(see §3.1).
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Make a left out the room with the toilet and walk past the bathtub. Turn at your first doorway on your right. Walk into the closet and stop immediately.
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Figure A2. Visu

al resﬁlts on val unseen of R2R (i,ii) and REVERIE (iii). During navigation, our agent recognizes the surrounding objects,

captures the fine-grained details, and then performs comprehensive decision-making to finish the task successfully. Please zoom in for best

view (more details in §A).
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B.2. Action Prediction

Object Prediction. For REVERIE [12], the agent needs to
identify the specific objects. We first use the ViT-B/16 pre-
trained on ImageNet to extract the features of /V,;” objects at
t-th step O; = {0, |0, e RP> }fgl, and add orientation fea-
tures [3, 4] with heading and elevation angles (D, = 768).
Then these object features are concatenated with grouped
VERs from different heights { F, € RP<*XY}Z | (§3.2).
We apply multi-layer transformers (MLT) to each group as
(see Eq. 5):

F{.,0:. =MLI([E; F{_;0..]),

~ z  ~ o (B3)

O; = Zz:l Ot,z ERD‘)XN‘ .

Then, the object prediction is formulated as:
p? = Softmax(MLP(O;)) € R™? . (B4)

Pretraining Objectives. For R2R [1] and R4R [7], we use
Masked Language Modeling (MLM) [3, 8] and Single-step
Action Prediction (SAP) [3, 6] as auxiliary tasks in the pre-
training stage. For REVERIE [12], the Object Grounding
(OG) [4, 10] is also used for object reasoning, and the sam-
ple ratio is MLM:SAP:OG=1:1:1. These auxiliary tasks are
based on the input pair (E, F}¢, G;), where E € RPwxL
are the word embeddings, F}¢ € RP<*XXxYxZ i5 the en-
coded VER, and G, € RP-*Vtl are the node embeddings
of the episodic memory G; at time step ¢ (see §3).
Finetuning Objectives. During finetuning, we alterna-
tively use teacher-forcing and student-forcing for action
prediction [3, 6]. For REVERIE, OG is also adopted for
finetuning:

Laction - 025Ltf + Lsf + ﬁOG- (BS)

Layout Estimation
Figure A3. Visualization of 3D room layout. Different from panoramic images in previous studies [15, 16], we adopt multi-view 2D
images as input. Please zoom in for best view (more details in §A).

C. Discussion

Terms of use, Privacy, and License. Matterport3D [2],
R2R [1], and REVERIE [12] are available for non-
commercial research purpose. Our code is implemented on
the MMDetection3D codebase. MMDetection3D (https:
//github.com/open-mmlab/mmdetection3d) is
released under Apache 2.0 license.

Limitation. As our agent is trained and evaluated on Mat-
terport3D Simulator, where all environments are not dy-
namic, deploying the algorithm directly on a real-world
robot may face challenges in capturing moving objects.
Therefore, additional research and development are re-
quired to ensure safe deployment in real-world scenarios.
This involves incorporating flow annotations and predict-
ing voxel velocity for foreground objects. Our work pri-
marily addresses the interior Vision-Language Navigation
task. The generalization of this approach to other naviga-
tion tasks [9, 11, 13] is not clear, and we plan to explore
this in future work.

Broader Impact. We propose a powerful environment rep-
resentation VER for VLN. Equipped with VER, our agent is
able to perform comprehensive decision-making. On VLN
benchmarks, our model demonstrates a promising improve-
ment. In addition, we encourage more technical researching
efforts devoted to environment representation learning for
future research in the community.
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