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This document provides more details of our approach
and additional experimental results, which are organized as
follows:
• Additional details (§A)
• Model details (§B)
• Discussion (§C)

A. Additional details

List of Symbols. The below table will be definitely added
into our supplementary material. We will omit unnecessary
subscripts for notational convenience.

Notation Description Index
N Number of candidates §3.3
X Volume state space §3.2
G Episodic memory graph §3.3
V Observed viewpoints §3.3
E Navigable connections §3.3
A Local action space §3.3
A∗ Global action space §3.3
E Instruction embeddings §3.2&3.3; Eq. (5)&(8)
Q 3D volume query §3.1; Eq. (1)
F 2d 2D perspective feature §3.1; Eq. (1)
F 3d 3D volumetric representation §3.1; Eq. (1)&(2)
F g Height-aware group representation §3.2; Eq. (5)
F p Neighboring pillar representation §3.3; Eq. (7)
G Node embeddings of G §3.3; Eq. (8)
p3d Local state transition probabilities §3.3; Eq. (4)
p2d Local action probabilities §3.3; Eq. (6)
pg Global action probabilities §3.3; Eq. (8)&(9)
† Subscript t in the paper denotes the navigation step.

Multi-resolution Labels. In coarse-to-fine VER represen-
tation extraction (§3.1), multi-resolution labels are utilized
to supervise the perception network at each scale. The size
of multi-resolution occupancy voxels are 0.4m, 0.2m, and
0.1m, respectively. The layout estimation and object detec-
tion are also employed at each scale. Fig. A1 shows the
coarse-to-fine occupancy prediction.
Visualization. We provide more visualization results on val
unseen of R2R [1] and REVERIE [12]. In Fig. A2, our
agent recognizes the ‘toilet’ and ‘bathtub’, and then finds
the first door easily. We illustrate the 3D layout estimation
in Fig. A3. Given the multi-view images as input, our model
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Figure A1. Visualization of multi-resolution occupancy prediction
(more details in §3.1).

can capture the 3D geometric information and reconstruct
the room structure.

B. Model Details
B.1. Environment Encoder

Cross-view Attention(CVA). We propose cross-view atten-
tion for 2D-3D sampling (§3.1) and use the camera pro-
jection function Pc to obtain the reference points (Eq. 1),
which is formulated as follows:

CVA
(
Q(x, y, z),F 2d) = DA

(
Q(x, y, z),Pc(p),F

2d), (B1)

where Q(x, y, z) ∈ RDe is located at (x, y, z) position of
Q ∈ RDe×X×Y×Z , F 2d ∈ RDi×H×W is the image feature,
and Pc employs the camera intrinsic and extrinsic parame-
ters for transformation. DA is the deformable attention [14]:

DA
(
q,p,F

)
=

K∑
k=1

Wk

S∑
s=1

AksWsF (p+ δpks), (B2)

where K is the number of attention heads, s indexes a total
of S sampling points, Ws is the learning weight, Aks ∈
[0, 1] is the learnable attention weight, δpks∈R2 is the pre-
dicted offset to the reference point p, and F (p + δpks) is
the feature at location p+ δpks computed by bilinear inter-
polation. We sample S = 6 points for each query in CVA.
Multi-task Learning. We adopt ViT-B/16 [5] pretrained on
ImageNet as the backbone. The size of the image features
F 2d are 1280 × 1024 × 768. We train the perception net-
work with a detection head, a layout regression head, and
a multi-class occupancy prediction head using the AdamW
optimizer with a learning rate of 1×10−4 for 500 epoches
(see §3.1).
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Make a left out the room with the toilet and walk past the bathtub. Turn at your first doorway on your right. Walk into the closet and stop immediately.

ii) Turn around and walk straight forward down the hallway all the way to the other end. Once you reach the end turn left and stop in the doorway.

iii) Walk into the kitchen. Take a right into the fitness room on the right. Stop at the back edge of the treadmill.

Figure A2. Visual results on val unseen of R2R (i,ii) and REVERIE (iii). During navigation, our agent recognizes the surrounding objects,
captures the fine-grained details, and then performs comprehensive decision-making to finish the task successfully. Please zoom in for best
view (more details in §A).

Multi-view Images Layout Estimation

i)

ii)

iii)

Figure A3. Visualization of 3D room layout. Different from panoramic images in previous studies [15, 16], we adopt multi-view 2D
images as input. Please zoom in for best view (more details in §A).

B.2. Action Prediction

Object Prediction. For REVERIE [12], the agent needs to
identify the specific objects. We first use the ViT-B/16 pre-
trained on ImageNet to extract the features of No

t objects at
t-th step Ot={on|on∈RDo}N

o
t

n=1, and add orientation fea-
tures [3, 4] with heading and elevation angles (Do = 768).
Then these object features are concatenated with grouped
VERs from different heights {F g

t,z ∈ RDe×XY }Zz=1 (§3.2).
We apply multi-layer transformers (MLT) to each group as
(see Eq. 5):

F̃ g
t,z, Õt,z = MLT

(
[E;F g

t,z;Ot,z]
)
,

Õt =
∑Z

z=1
Õt,z ∈RDo×No

t .
(B3)

Then, the object prediction is formulated as:

po
t = Softmax(MLP(Õt)) ∈RNo

t . (B4)

Pretraining Objectives. For R2R [1] and R4R [7], we use
Masked Language Modeling (MLM) [3, 8] and Single-step
Action Prediction (SAP) [3, 6] as auxiliary tasks in the pre-
training stage. For REVERIE [12], the Object Grounding
(OG) [4, 10] is also used for object reasoning, and the sam-
ple ratio is MLM:SAP:OG=1:1:1. These auxiliary tasks are
based on the input pair (E,F 3d

t ,Gt), where E ∈ RDw×L

are the word embeddings, F 3d
t ∈ RDe×X×Y×Z is the en-

coded VER, and Gt ∈ RDe×|Vt| are the node embeddings
of the episodic memory Gt at time step t (see §3).
Finetuning Objectives. During finetuning, we alterna-
tively use teacher-forcing and student-forcing for action
prediction [3, 6]. For REVERIE, OG is also adopted for
finetuning:

Laction = 0.25Ltf + Lsf + LOG. (B5)

C. Discussion

Terms of use, Privacy, and License. Matterport3D [2],
R2R [1], and REVERIE [12] are available for non-
commercial research purpose. Our code is implemented on
the MMDetection3D codebase. MMDetection3D (https:
//github.com/open-mmlab/mmdetection3d) is
released under Apache 2.0 license.
Limitation. As our agent is trained and evaluated on Mat-
terport3D Simulator, where all environments are not dy-
namic, deploying the algorithm directly on a real-world
robot may face challenges in capturing moving objects.
Therefore, additional research and development are re-
quired to ensure safe deployment in real-world scenarios.
This involves incorporating flow annotations and predict-
ing voxel velocity for foreground objects. Our work pri-
marily addresses the interior Vision-Language Navigation
task. The generalization of this approach to other naviga-
tion tasks [9, 11, 13] is not clear, and we plan to explore
this in future work.
Broader Impact. We propose a powerful environment rep-
resentation VER for VLN. Equipped with VER, our agent is
able to perform comprehensive decision-making. On VLN
benchmarks, our model demonstrates a promising improve-
ment. In addition, we encourage more technical researching
efforts devoted to environment representation learning for
future research in the community.
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