
Supplementary

A. Dataset Description
As there are no datasets specifically designed for evaluat-
ing image immunization performance, we conduct quantita-
tive experiments following settings similar to those used in
Photoguard [23]. We first generate 150 images featuring 3
distinct objects using the diffusion model. For each object,
we create 2 editing prompts corresponding to two malicious
editing scenarios: altering specific content in the image or
manipulating other regions. The details of the prompts used
in the experimental dataset are provided as follows:

Original prompt Editing prompt 1 Editing prompt 2
A dog A cat A dog in the park
A horse A zebra A horse and a cow
A man A woman A man with a hat

Notably, Editing prompt 1 is designed to simulate a sce-
nario where malicious users attempt to alter specific content
in the image, while editing prompt 2 simulates a situation
where malicious users try to manipulate regions other than
the specific content of our concern. Due to the variability
in outcome quality caused by different random seeds [13],
we conduct our experiments by averaging the editing results
over 20 random seeds. The editing results are obtained us-
ing Stable Diffusion V1.4 [19] in accordance with the pro-
vided editing prompts.

B. Attacking Strength vs Diffusion Timestep
The strength of our semantic attack is tied to the number
of diffusion timesteps employed in the immunization. As
illustrated in Figure A, it is evident that similar to the dif-
fusion attack [23], our semantic attack becomes more po-
tent with an increase in the number of attacked diffusion
timesteps. Notably, our approach is able to achieve stronger
immunization under the same number of diffusion timesteps
while reducing GPU memory usage (see Figure 6), making
it more computationally efficient.

C. The Effect of Semantic Attack on Attention
Map

Figure B illustrates the attention decay during our semantic
attack. The primary objective of our semantic attack is to

Figure A. Comparison of the quality of edited images immunized
by the diffusion attack and our semantic attack under various dif-
fusion timesteps.

divert the attention of the diffusion model, making it unable
to locate the correct region for editing. As depicted in the
figure, after a few iterations of attacking, the attention of the
model is effectively ”distracted,” and the attention map of
the concerned content is sabotaged, leading to suboptimal
results in subsequent editing attempts.



Figure B. An illustration of the attention map after .

D. Additional Qualitative Results

We present supplementary results of our semantic attack to
highlight and demonstrate the immunization capabilities of
our approach.

As illustrated Figure C, previous immunization ap-
proaches exhibit varying degrees of success in protecting
images, with uncertainty in their effectiveness. For in-
stance, in the figure, the immunization of certain examples,
such as the polar bear image, is relatively successful, while
others fail to render the editing ineffective. In contrast, our
semantic attack ensures that the model cannot recognize the
content of our concern while masking out other regions,
providing a more stable and consistent level of protection.
Through our immunization, the model struggles to gener-
ate details according to the prompt, as evident in the case
of ”kitchen” and ”cowboy” in the second example. Ad-
ditionally, it fails to recognize preserved content, resulting
in overlapping results of two different objects, as observed
in the example of the chicken. We provide additional ex-
amples of the immunization ability against image-to-image
editing in Figure D. It is evident that with the same perturba-
tion budget and attacking iterations, our approach achieves
superior immunization, resulting in editing outcomes that
are more unreal and exhibit more artifacts.

Additional examples in Figure E F G are provided to as-
sess the immunization effectiveness of our semantic attack
against advanced editing approaches. As highlighted in the
main paper, the editing outcomes undergo significant dis-
ruption following immunization through our semantic at-
tack.The effectiveness of Null-text inversion [14] results is
significantly diminished due to their dependency on precise
attention maps for the editing object. In contrast, EDICT
[30] demonstrates a nullifying impact on the editing of im-
munized images, possibly due to its pursuit of an exact in-
version of a real image using the noises predicted by the
denoising U-net. Our attack on the denoising U-net may
lead to a failed inversion, compromising the effectiveness of
the forward diffusion process in editing. On the other hand,
DiffEdit [4] outcomes exhibit a failure to generate accurate

results after immunization. This can be attributed to their
dependence on distinguishing the predicted noise on the
original object from the desired editing object. Our model
interferes with the denoising U-net, hindering the model’s
accurate recognition of the region to be edited, leading to
low-quality editing results.



Figure C. Qualitative comparison on the immunization ability against image inpainting. The content to be immunized in our semantic
attack is indicated by the underlined word in the text prompt.



Figure D. Qualitative comparison on the immunization ability against image editing.



Figure E. Qualitative results of our immunization against null-text inversion editing proposed in [14]. The content to be immunized in our
semantic attack is indicated by the underlined word in the text prompt.

Figure F. Qualitative results of our immunization against EDICT editing proposed in [30]. The content to be immunized in our semantic
attack is indicated by the underlined word in the text prompt.



Figure G. Qualitative results of our immunization against DiffEdit editing proposed in [4]. The content to be immunized in our semantic
attack is indicated by the underlined word in the text prompt.
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