Learned Trajectory Embedding for Subspace Clustering

Supplementary Material

A. Experimental Details

As discussed in the main paper, the feature extractor f_{θ} takes a variable-length input trajectory \mathbf{x} with two input channels representing the x and y values and outputs the feature $\mathbf{f} \in \mathbb{R}^{d}$, and the dimensionality of the latent space is set to $d=128$. Specifically, the network consists of the three 1D convolutional layers (with channels changing as follows: $2 \rightarrow 64 \rightarrow 128 \rightarrow 512$), followed by max pooling in the temporal domain and two linear layers (512 $\rightarrow 128 \rightarrow 128$). All convolutional operations in f_{θ} use kernels of size 3 with stride 1 . The subspace estimator consists of the parametric basis functions h_{ψ}^{j} with trainable parameters $\left(\mu_{j}, \alpha_{j}, \beta_{j}, \gamma_{j}\right)$ and a multilayer perceptron ω_{ζ} which infers the subspace basis coefficients from the feature f. In particular, ω_{ζ} has three linear layers $(128 \rightarrow 512 \rightarrow$ $1024 \rightarrow 512$), and the resulting 512 -dimensional vector is reshaped into a coefficient matrix $\Omega_{\zeta}(\mathbf{f}) \in \mathbb{R}^{128 \times 4}$ used in (8). ReLU activation is used after each convolutional and each linear layer. During training, we used Adam optimizer with a learning rate set to 0.001 , reduced at each epoch with an exponential decay of 0.999 .

B. Ablation Studies

We conduct an ablation study in which we first train only the feature extractor f_{θ} with InfoNCE loss (and obtain network weights θ_{1}). Subsequently, we include the subspace estimator g_{ϕ} and continue training with the entire loss, resulting in weights θ_{2}. The two sets of weights are compared using the classification error of clustering in the feature space. Table 3 shows that the performance on validation and test data improves with the full architecture and the complete loss, proving the advantage of training the feature extractor f_{θ} together with the subspace estimator g_{ϕ}.

		Validation subset		Test subset	
Weights	Arch. + loss	Mean	Median	Mean	Median
θ_{1}	$f_{\theta}+$ InfoNCE loss	1.80	0.00	2.97	0.00
θ_{2}	$f_{\theta}+g_{\phi}+$ total loss	1.51	0.00	0.85	0.21

Table 3. Classification error (\%) of clustering with $f_{\theta_{1}}$ trained using $f_{\theta}+\operatorname{InfoNCE}$, and $f_{\theta_{2}}$ trained using $f_{\theta} \& g_{\phi}+$ total loss.

C. Time Complexity

As discussed in the main paper, our method is very fast. Its time complexity is analysed below. A single trajectory inference requires $\mathcal{O}(F)$ computations due to the convolutional structure. Passing N full trajectories is therefore
$\mathcal{O}(N F)$, and the subsequent clustering requires $\mathcal{O}\left(N^{2}\right)$. The trajectory completion comprises matrix operations of size up to $2 F \times 2 F$ hence costs $\mathcal{O}\left(F^{3}\right)$. It can also be sped up by employing randomized singular value decomposition.

