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In this supplementary material, we provide details on the
implementation of our Learnable Earth Parser (Sec. A-1),
details about our proposed Earth Parser Dataset (Sec. A-
2), and some additional quantitative (Sec. A-3) and qualita-
tive (Sec. A-4) results. Our code and dataset are available
at https://romainloiseau.fr/learnable-
earth-parser/.

A-1. Detailed Configuration

We report here the exact architecture of the Learnable Earth
Parser network and training details.

Learnable prototypes. Following Loiseau et al. [5], the
point coordinates of our prototypes P1,⋯,PK are learned
directly as free parameters of the model through our recon-
struction loss. Each prototype contains 256 points leading
to learning K × 256 × 3 free parameters to represent all the
learned prototypes. Eventually, our model’s 3D prototypes
are defined by their points’ coordinates, which are free pa-
rameters learned by optimizing the reconstruction loss Lrec
and its regularization Lreg. While the reconstruction task
serves as a label-free supervisory signal, our main goal is
not to achieve the best possible reconstruction but to learn
simple and interpretable prototypes. A model using feature-
space prototypes and arbitrary transformations may achieve
a much lower reconstruction error, but its prototypes would
have low semantic purity and interpretability.

Network architecture. Our model takes a point cloud X
and computes a voxelization in a grid of size 64 × 64 × 64.
As shown in Figure A-1, our model is composed of (i) a
point encoder Epoint, (ii) a scene encoder Escene, (iii) S slot
feature extractors Ds and (iv) five shared slot parameters
generators: Dproba,Dscale,Drot-y,Drot-z,Dtranslate. We provide
details on these networks below.

• Point encoder. Each input point of X is associated with
a 10-dimensional descriptor: (1-3) normalized position in
the tile in [−1,1]3, (4-6) rgb color, (7) normalized LiDAR
reflectance, and (8-10) its offset relative to the center of its
assigned voxel. The point encoder Epoint is a linear layer that
maps these descriptors to a 16-dimensional point feature.
• Scene encoder. We compute voxel features by max-
pooling the features of the points associated to each voxel.
The scene encoder Escene then maps these voxel features to
a single scene feature, a vector of size 1024, by using a
sequence of 6 3D sparse convolutions [2] with kernel size
[3,3,3] and 6 strided convolutions with kernel size [2,2,2]
and stride [2,2,2].
• Slot feature extractor. Each slot s takes as input the
scene feature produced by Escene and maps it to a slot feature
of size 128 with a dedicated linear layer Ds.
• Slot parameters generators. Five 3-layers Multi Layer
Perceptrons (MLPs) are shared by all slots to map their slot
features to the associated parameters of the reconstruction
model.
- Dproba outputs the slot activation and prototype choice

probability αs et βk
s .

- Dscale outputs three scales in [−1/2,2], corresponding to
scaling the prototypes in each canonical directions.

- Drot-y outputs a rotation in [−π/10, π/10] to be applied
around the y axis.

- Drot-z outputs a 2D point on the unit circle which is then
mapped to a rotation in [−π,π] to be applied around the
z axis.

- Dtranslate outputs a 3D translation vector in R3.
These parameters are used to determine the activation of
the slot, choose a prototype, then apply a sequence of trans-
formations in the following order: scaling, y-rotation, z-
rotation, and translation.
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Figure A-1. Learnable Earth Parser Detailed Architecture. Details of the architecture showing all layers in
Epoint,Escene,Ds,Dproba,Dscale,Drot-y,Drot-z and Dtranslate. We use LayerNorm [1] and LeakyRelu after all hidden layers.

Reconstruction loss. Due to the arbitrary square shape
of our samples X, some objects can appear only partly in
a patch. We don’t want the network to learn prototypes
specifically to fit such object parts, as it is an artifact of our
sampling procedure. Indeed, square patches are sampled
randomly during training, and along a non-overlapping grid
for inference. Instead, we propose to ignore the points of the
reconstruction Yk

s that falls beyond the normalized [−1,1]
extent of the patches. This allows the network to predict full
objects without being penalized in terms of accuracy. To do
so, we modify Equation 8 from the main paper as follows:

Lacc(M,X) =
1

S

S

∑
s=1

K

∑
k=1

βk
s d (Ỹ

k
s ,X) , (A-1)

where Ỹk
s is the subset of points of Yk

s that falls within the
horizontal extent of their patch [−1,1]2 × R. To prevent
the slots from predicting shapes outside of the patch extent,
we regularize our model by the square Euclidean distance
between the output of Dtranslate and the set [−1,1]2 × R for
each slot.

Training. We use the efficient CUDA implementation of
the Chamfer distance by PyTorch3D [10] which signifi-

cantly speeds up training. We use the ADAM optimizer [4]
with a learning rate of 10−4 and default parameters, except
for the prototypes’ intensities, scales and points’ positions
which we learn without weight decay.

Curriculum learning. Following the ideas of Monnier et
al. [7] and Loiseau et al. [5], we use a multi-stage curricu-
lum strategy to prevent our model from falling in bad min-
ima. We gradually unfreeze the model parameters in the
following order: (i) translation, rotation, tilt, slot activation,
and choice of prototype; (ii) intensities of the prototypes,
when available; (iii) scales of the prototypes; (iv) shapes of
the prototypes (positions of their 3D points); (v) anisotropic
scalings of the prototypes. Alignment networks are initially
set to identity by setting the parameters of the decoders’
last linear layers to zero. When unfreezing a new mod-
ule, the learning rate of all the model’s parameters is set to
1/1000 of the global learning rate and gradually increased
over 1000 batches to the global learning rate to smooth the
training and benefit from what has been learned previously
by the encoder. We define an “epoch” as 512 batches of
64 patches, and each stage of the curriculum is trained until
convergence.



Table A-1. Learnable Earth Parser hyperparameters. Choice
of hyperparameters when training on the Earth Parser Dataset. We
used similar configurations across scenes, only adapting the voxel
size and number of slots.

Scene Voxel size (cm) number of slots S

Crop Fields 40 64

Forest 60 64

Greenhouses 60 64

Marina 20 64

Power Plant 60 128

Urban 40 64

Windturbines 320 64

Scene-specific hyperparameters. We trained our model
on each seven scenes of the Earth Parser Dataset, with minor
adaptation shown in Table A-1. We only change the size
of the voxel grid to adapt our reconstruction model to the
size of the typical object we want to discover. For example,
a windturbine is typically 100 meters tall, while a boat is
typically 5 meters long. We also doubled the number of
slots for the “Power Plant” scene because of its geometric
complexity.

ShapeNet adaptations. As the objects of ShapeNet-
Part [11] are simple, we only use S = 6 slots. To account
for the diversity of the size and shapes of parts, we replaced
the anisotropic-scaling transformation by an unconstrained
affine transformation.

Ablation Study. The structure of our ablation study inten-
tionally mirrors the curriculum learning. Specifically, we
remove components in decreasing order of their impact on
the reconstruction quality. Removing the translation while
retaining all other transformations would lead to poor learn-
ing dynamics [7]. Our approach ensures that each step of
the ablation progressively assesses the impact of each com-
ponent.

A-2. Earth Parser Dataset Details

Classes names. As show in Table A-2, each scene
of the Earth Parser Dataset is annotated with different
classes among “ground”, “vegetation”, “building”, “boats”,
“bridge”, “electric lines”, and “windturbine”.

Localization. We report the localization of the scenes of
Earth Parser Dataset in Table A-2. Our dataset has been
acquired in various environments distributed on the French
territory.

A-3. Additional Quantitative Results

Results on the Earth Parser Dataset. We report in Ta-
ble A-3 detailed results for the baselines and our method.
We evaluated the use of elevation and LiDAR intensity for
the k-means [6] baseline, the use of intensity in a way sim-
ilar to ours for AtlasNet v2 [3], and the effect of our proto-
type selection post-processing step:
• k-means features. The use of both intensity and elevation
gives a small boost to semantic performances. However, we
see that when clustering with a small number of centroids
(K = 6, as in our model), using only the elevation gives a
reasonable baseline.
• AtlasNet v2 intensity. We extend AtlasNet v2 to handle
intensity in a manner similar to our approach, which im-
proves its segmentation results. However, AtlasNet v2 uses
the same number of prototypes for each input regardless of
its complexity and thus does not achieve high semantic seg-
mentation scores.
• Prototype selection post-processing. On the Learnable
Earth Parser, we see that our post-processing step has a
limited impact on the quality of the prediction and recon-
structions, except for the scene “Forest” for which the seg-
mentation score goes from 87.3 to 80.5. This step can ei-
ther increase (“Crop Fields”, “Forest”, “Marina” scenes) or
decrease (“Windturbines” scene) the reconstruction quality.
We believe this is because of the regularization loss which
encourages all prototypes to be used. Finally, this simple
post-processing step allows us to significantly decrease the
number of prototypes and adapt it to the scene complexity.

Results on ShapeNet. Our experiment on ShapeNet is in-
tended as a sanity check in a controlled setting. We report
in Table 4 significantly better results than AtlasNet v2 [3]
for planes with arbitrary orientation (+34.1 mIoU). We re-
peated the experiment for guitars and chairs and observed
improvements of +23.1 and +1.5 mIoU, respectively.

Additional ablations. The coordinates of the prototypes’
points are directly learned as parameters of the model in
an unsupervised fashion with our regularized reconstruction
loss. We choose point cloud prototypes for their simplicity
and expressivity. We also trained our model using cuboids
or superquadrics as prototypes, by learning their parame-
ters (xyz-scales for cuboids, and xyz-scales and α1, α2 for
superquadrics) as free parameters of the model for each pro-
totypes. This leads to worse reconstruction results (respec-
tively, +69.3% and +42.5% increase in Chamfer distance)
and segmentation (respectively, −15.8 and −17.4 mIoU) re-
sults on average on all scenes of the Earth Parser Dataset.
While these shapes are more compact (fewer degrees of
freedom), the associated reconstructions appear less legible
and interpretable. They also fail to capture the diversity of



real-world 3D data (houses, trees, windmills, boats, etc.).

A-4. Additional Qualitative Results

Earth Parser Dataset results. We show in Figure A-2 the
ground truth semantic segmentation, our predicted seman-
tic segmentation, our reconstruction and our learned proto-
types. They showcase the quality, interpretability, and di-
versity of use cases of our model on this dataset of aerial
LiDAR scans. We also show some semantic and instance
segmentation closeups in Figure A-3.

Instance segmentation. We show in Figure A-4 a com-
parison of the instance segmentation produced by Su-
perQuadrics [9] and our Learnable Earth Parser. Since Su-
perQuadrics [9] uses a restricted family of 3D shapes to
reconstruct an input scene, it has worst qualitative perfor-
mances for instance segmentation when compared to our
model, which learns scene-specific prototypes and can pro-
vide semantic information.

Generalizability. Our model trains individually per
scene, taking around 12 hours each. We observed quali-
tatively that a model trained on one scene adapts well to
other scenes of similar natures (e.g., different forests) but
not otherwise. Training a universal model for diverse scenes
is possible but would require significant memory due to the
large number of prototypes needed.
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Table A-2. Earth Parser Dataset classes and localisation. We show the class names and color codes for the seven scenes of our dataset.
Unlabeled points are represented in black . The Earth Parser Dataset was acquired at different locations in France, spanning a wide
variety of environments.

Crop Fields Forest Greenhouses Marina Power Plant Urban Windturbines

Ground Ground Ground Boats Ground Ground Ground
Vegetation Vegetation Vegetation Bridge Vegetation Vegetation Vegetation

Building Building Building Windturbine
Electric lines



Ground Truth Semantic Segmentation Reconstruction Prototypes
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Figure A-2. Qualitative Results. For all scenes of the Earth Parser Dataset, we show the ground truth labels, the semantic segmentation,
reconstruction, and prototypes learned by our Learnable Earth Parser.



Figure A-3. Qualitative Semantic and Instance Segmentation. Our Learnable Earth Parser can perform semantic and instance segmen-
tation on various scenes with minor adaptations.

Table A-3. Results on the Earth Parser Dataset. We report the quality of the reconstruction (Cham.) and semantic segmentation (mIoU)
for the models presented in the main paper and other variations. Bold numbers indicate the best results of the models shown in the main
submission, while green bold numbers indicate the best results across all variations. ↓ indicates that the variation results in a significant
drop in performance, while ↑ indicates a performance boost. We also show the number of prototypes selected by our post-processing
selection algorithm.

Rec
.

Sem
an

tic Crop Fields Forest Greenhouses Marina Power Plant Urban Windturbines

Cham. mIoU Cham. mIoU Cham. mIoU Cham. mIoU Cham. mIoU Cham. mIoU Cham. mIoU

k-means (i,z) [6] ✗ ✓ — 93.8 — 71.5 — 39.3 — 41.4 — 42.8 — 56.5 — 87.6
k-means (i) [6] ✗ ✓ — ↓74.5 — ↓45.5 — ↓36.3 — ↓41.4 — ↓28.8 — ↓42.5 — ↓64.1
k-means (z) [6] ✗ ✓ — 93.9 — 71.4 — 39.2 — 41.4 — 42.3 — 56.2 — ↓77.5

SuperQuadrics [9] 3D ✗ 0.86 — 1.04 — 0.60 — 0.93 — 0.58 — 0.40 — 13.5 —

DTI-Sprites [8] 2.5D+i ✓ 6.10 83.2 14.59 40.2 5.36 42.0 6.16 41.4 5.36 29.0 2.99 47.3 36.19 25.9

AtlasNet v2 [3] 3D+i ✓ 1.07 43.1 1.58 71.4 0.56 49.1 0.73 42.1 0.45 41.6 0.63 48.8 9.47 48.1
AtlasNet v2 [3] w/o intensity 3D ✓ 1.08 43.1 ↓1.92 ↑74.4 ↑0.49 ↓46.0 ↓0.80 ↓40.8 0.43 ↓38.7 ↓0.70 ↓40.4 ↑7.56 ↓25.9

Ours 3D+i ✓ 0.72 96.9 0.88 83.7 0.40 91.3 0.82 78.7 0.44 52.2 0.29 83.2 6.65 93.4
Ours w/o post-processing 3D+i ✓ ↓1.02 96.5 ↓0.97 ↑88.0 0.38 90.7 ↓0.96 78.3 0.42 52.4 0.28 83.7 6.59 ↑96.4
Ours # of selected prototypes — — 3 4 5 3 4 5 5
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Figure A-4. Instance Segmentation. We represent the instances predicted with our algorithm and by SuperQuadric [9]. We see that
SuperQuadrics’ reconstruction struggles modeling complex objects with only one instance. Moreover, our method make it easier to
differentiate between different object types such as “trees” or “boat hull”, while all superquadric are generated in the same way.
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