Positive-Unlabeled Learning by Latent Group-Aware Meta Disambiguation
(Appendix)

Lin Long!'* Haobo Wang!*
! Zhejiang University, China

Zhijie Jiang!

{1long, wanghaobo, z3jjjj882, changy, cg,

A. Additional Clarifications

A.1. Notations
Notation Description
Dirain Training set consisting of PU data.
D Support set consisting of a small number of
sup labeled data, disjoint from Diyyin.
Biain Training mini-batch sampled from Diin.
Biup Support mini-batch sampled from Dyyp.
Y Pseudo-labels for unlabeled data in Diin.

Classifier parameterized with 6.

fo(*) fo(x) : R? — [0, 1] indicates the probability
for the input « to be positive.

Encoder parameterized with 6, which consists
of the representation layers from fy with a

9(") projection head. gg () : R* — R*?® maps the
input x to an embedding of length 128.

L(-,) Total loss for model (actual-)training.
Classification loss for model training or

Las(+) evaluation. In LaGAM, BCE is used in
particular.

Leont(+,*) Contrastive loss for model (actual-)training.

Table 7. Additional explanations of the notations used in this arti-
cle.

A.2. Pseudo-Code of LaGAM

As shown in Algorithm 1.

A.3. Implementation Settings

For fair comparisons, most of our experimental settings re-
main consistent with [1, 7, 13]. Specifically, our LaGAM
is trained for 400 epochs (with 20 epochs of warm-up) on
each setup, optimized using momentum SGD with a batch

*Joint first authors.
Corresponding author.

Lei Feng?
2 Singapore University of Technology and Design, Singapore

Chang Yao'" Gang Chen' Junbo Zhao!

j.zhao}@zju.edu.cn, lfenggag@gmail.com

Algorithm 1: Pseudo-code of LaGAM.

Input: Training dataset Dywin, support dataset Dyp, classifier f, encoder
g, learning rate A\, EMA parameter €, weighting parameter 3,
number of epochs n.
1 Initialization: model parameter 8, pseudo-labels g < O;

2 for1,2,...,ndo

3 perform k-means on Dyin and determine the corresponding cluster
center of each sample;

4 for mini-batches Biain C Dirain do

// embeddings generation

er to random

augmentat

5 Bg + {a: = g(Aug,(2:))[(®i, yi) € Buain};
6 By + {ki = g(Augy, (z:))|(xi, yi) € Buaints
7 A «— Bq U By
// 1°% backward: Meta-Train
8 0 +— 60— >\v9£'c]s(6uain7 9)9
// 2" backward: e
9 6 — —
// pr ion
10 fori =1,2,...
1 | si<+1(6 >0
12 end
// EMA update
13 g eg+(1—e)s;
// actual training
] 0 <+ 60 — AV [Las+BLeonl;
15 end
16 end

size of 64 and an initial learning rate of 0.001, which decays
as training progresses. The temperature 7 for contrastive
loss in Eq. (2) is set as 0.07. Notably, the encoder g used
for embedding generation in contrastive learning shares the
same representation layers as the classifier f, followed by
a projection head that maps the representations to embed-
dings of length 128. For convenience, when performing
k-means, we uniformly set the number of clusters to 100
for all datasets. Besides, kNN local neighbor smoothing is
activated after the 50t epoch, and the number of neighbors
is set as 10. We follow [7] for the implementations of the
baselines and use mostly default parameters. We will make
a sensitivity analysis on the weighting parameter (3 in Eq.
(13) later. More implementation details can be referred to
in the source code.

Notably, for all ablation studies and sensitivity analyses,
the results are obtained using ResNet-18 as the default back-

bone and a particular set of seeds for eliminating the in-
terference of irrelevant factors. “CIFAR-10" and “CIFAR-
100” in the result tables refer to CIFAR-10-1 and CIFAR-
100-2, respectively, unless otherwise specified.

B. Theoritical Insights
B.1. Motivation

Challenges. Generally, most of the existing PU learning
methods can be divided into two categories, termed cost-
sensitive methods [1-3, 5, 12] and sample-selection meth-
ods [1, 8, 9, 12]. Cost-sensitive methods initially treat all
unlabeled samples as noisy negative ones, followed by esti-
mation bias correction with specific misclassification risks,
the goal of which is to downweight the contribution of those
false negatives. Among them, Self-PU [1] creatively pio-
neers the technique of meta-learning for sample-wise loss
reweighting, to directly boost the model’s generalizability
with a golden support set. Despite the promising results,
assigned with low weights, the unlabeled positive samples,
i.e., the false negatives, actually cannot provide valid super-
vision signals and thus are not effectively utilized, which
greatly weakens the intensity of supervision and might eas-
ily cause the model to overfit. Sample-selection methods, as
the name suggests, focus on identifying confident positive
or negative samples from the unlabeled set by hand-crafted
heuristics or standard semi-supervised learning methods, to
produce solid supervision signals. However, the accuracy
of sample-selection cannot always be promised, where ex-
ploiting the model’s output confidence scores for selecting
reliable samples may lead to confirmation bias or accumu-
lated error, greatly affecting the model’s generalizability.

Solutions: from trade-off breaking to semantic under-
standing. Under such a trade-off, it is evident that pre-
vious works are not able to simultaneously satisfy the
needs for supervision intensity and generalizability. This
phenomenon inspires us to propose the idea of meta-
disambiguation, which (i)-ensures generalizability with the
same golden support set; and (ii)-allows the false negatives
to be actually corrected instead of just being filtered out by
directly meta-learning the pseudo-labels. However, from
Table 4 we can see that, despite that meta-disambiguation
can indeed effectively mitigate the label noise, the overall
performance still largely lags behind the supervised coun-
terpart. This result suggests that solving the PU problem not
only requires a reasonable and robust label disambiguation
strategy, but also a deeper understanding of the underlying
semantics within PU data to help the model stay on the cor-
rect disambiguation trajectory. This motivates us to conduct
more fundamental research on how to produce more seman-
tically discriminative representations for PU data, which ul-
timately becomes the core idea of LaGAM.

How is the lack of semantics the bottleneck? We would
like to exemplify this with a case of human decision. As hu-
mans, we are typically unaware of many subconscious rea-
soning steps involved in solving “simple” binary questions.
To answer “Do you like sushi?”, we’ll consider various fac-
tors including texture, taste, and price. Intuitively, we ex-
pect our model also to learn such implicit “features” from
which the binary output can be easily inferred, namely la-
tent semantics. However, we notice that the overly coarse-
grained binary labels cannot provide enough supervision
that reflects the criteria for classification. As shown in
Figure 5, with data distribution being better semantically
aligned, the decision boundary naturally becomes more dis-
tinct, which explains the effectiveness of LaGAM.

B.2. Meta-Disambiguation from an Influence Func-
tion Perspective

To better understand the underlying logic of meta-
disambiguation, we provide theoretical derivations to ex-
plain the intrinsic principle of meta-disambiguation from
the perspective of influence function [6]. The influence
function is a powerful tool for analyzing the robustness
of a trained model, which studies two essential problems:
how would the model’s prediction change if a training input
were removed (modified)[6]? Intuitively, these two ques-
tions investigate how the model makes use of a certain train-
ing sample and the quality of a certain training sample, re-
spectively. Therefore, in the context of PU learning, we
will focus on the latter, investigating the impacts of ap-
plying small perturbations to a sample on the model’s out-
put to examine the correctness of the given training sam-
ple, thus being able to detect those false negatives and re-
fine them in the right direction. Formally, following [6],
given a sample zx = (g, yx) € Diain, consider the per-
turbation z — zx A where zp A = (xk,yr + A), and
let ézk_ ~,—z, be the model parameter trained on the dataset
Dmin\{zk} U {zk.a}. To approximate the effect of such a
perturbation, define the parameters resulting from moving €
from 2y, to 2y, A as:

957Zk,A,—Zk = arg;nin[ﬁcls([j’train; 9)

+el(folap), i+ 8) — el(folan), g)] 1Y
=0(g+eA),where A; =1(i = k)A

Then we can apply the chain rule to measure how the func-
tions of € are affected with respect to the perturbation A. In
particular, according to [6], the influence on the evaluation

loss L(Bup, 0z, 2, ,— =,) can be approximated by:

A T
T = VaLets(Buups Oz a,—21)
L)
= o | VB tas) /A
(15)
ez n—2p
where —=— can be rewrote as:
e=0
8és7zk_a,—zk . M
86 e=0 86 e=0
e—0 e (16)
i 28 EB) —0(Y) |
e—0 EA
_ %)
Oy

By substituting it back into the original equation, we have:

99(y) j
IPTert = oYk VQ‘CCIS(BSUP’ agazk,A7_2k)T -
~ T
o aLClS(Bsupv os,zk,A,—Zk) _ 5T
= — Y%

Yk
According to the Lagrange’s Mean Value Theorem, I;HA
tells us the approximation effect that z; + 2z, A has on
the evaluation loss, which indicates that whether z; A is a
better or worse substitution of z;. By setting A in the di-
rection opposite t0 Z,e, We can obtain the optimal zj A~
that minimizes the evaluation loss, where the perturbation
A* indicates exactly the same updating direction for spe-
cific g as we have done with §; in Eq. (10). Since the
new training sample z; A~ that lowers the evaluation loss is
more likely to be the sample with a correct label, it is also
reasonable for us to believe that the corresponding pertur-
bation ¢y, is the right updating direction that better guides
Y, towards the ground-truth. By applying such influence
function analysis to all samples in By,;,, we can obtain the
optimal updating direction for each sample, which is equal
to directly calculating the gradient of Leis(Bgp, (7)) W.r.t.
Y, just the same as how we calculate 8 in Eq. (10).

In implementations, we actually adopt the concept of the
influence function, transforming the computation of the gra-
dient of the loss w.r.t. ¢ into the computation of the gradient
of the loss w.r.t. a perturbation applied on y. This approach
allows us to control that ¢ always maintains the form of a
probability distribution, thus avoiding the invalid labels that
would result from directly computing the gradient w.r.t. y.

In meta-disambiguation, our starting point is to improve
the model’s generalizability on the support set by adjust-

ing pseudo-labels, being outcome-oriented. From the per-
spective of the influence function, instead, we return to
the essence of label disambiguation, observing the differ-
ent impacts caused by perturbations in various directions
on a sample, which allows us to determine whether there
are any substitutions that are more likely to be the ground-
truth. The influence function perspective provides better
interpretability for such an iterative algorithm, allowing us
to more intuitively understand how the labels of unlabeled
samples are progressively distilled by constantly finding a
substitution that prompts the model to make better predic-
tions. Besides, by establishing such a connection between
meta-disambiguation and influence function, some relevant
studies can also provide inspiration for accelerating the cal-
culation of ¢, such as [6, 10], which may further improve
the efficiency of our algorithm.

From the perspective of influence function, it also ex-
plains why the effectiveness of meta-disambiguation is su-
perior to the prevalent reweighting strategy, which adopts a
different loss function:

b 2, = argemin[ﬁcls(l?uam,@) +el(fo(xr),r)] (18)

which essentially investigates the influence of the existence
of a particular sample z;. Though this can also be consid-
ered as a way to identify false negatives, the existence of
which is likely to have a negative influence on the evalua-
tion loss, the adjustment on g is not able to take place until
the training ends, since the weights of the samples must be
non-negative, i.e., £ € [— %, +o0], hence false negatives can
only be filtered out during training, rather than corrected. It
means that estimation bias cannot be completely avoided
with the reweighting strategy, which may reduce the ro-
bustness of the end-to-end training process. In contrast, the
influence function of perturbation allows us to iteratively
determine and apply the optimal updates on each sample
during training, which is more efficient and effective.

B.3. Additional Explanations of the Support Set

To emphasize that the introduction of the golden support set,

which consists of both labeled positives and negatives, will

not cause data leakage or result in unfair comparisons, we
provide more detailed explanations in this section, to prove
that such a setting is legitimate from various aspects:

1. First and foremost, we are not the first to apply the
technique of meta-learning to PU learning, instead, we
simply follow the setups of receptive work Self-PU [1],
where the validation set is used as the support set for
sample reweighting.

2. Technically, we do not actually update the model param-
eters in the Label-Update stage, as it is called “virtually
updated” in Section 4.2. Instead, from the perspective
of the influence function, we simply inspect its behav-
ior when perturbing the pseudo-labels y with the support

Setup # Train # Test Input Size Class Prior Task Backbone
CIFAR-10 50,000 10,000 3 x32x 32 0.4 Vehicle Recognition 7-layer CNN
CIFAR-100-1 | 50,000 10,000 3 x 32 x 32 0.1 Vehicle Recognition 13-layer CNN
CIFAR-100-2 | 50,000 10,000 3 x32x 32 0.5 Animal Recognition 13-layer CNN
STL-10 105,000 8,000 3 %96 x 96 - Vehicle Recognition 7-layer CNN
Alzheimer 5,890 1,279 3 X 224 x 224 Alzheimer’s Disease Diagnosis ResNet-50
Table 8. Specifications of different setups.
Setup Positive Set Negative Set
CIFAR-10-1 0,1,8,9 2,3,4,5,6,7
CIFAR-10-2 2,3.4,5.6,7 0,1,8,9
CIFAR-100-1 18,19 0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17
CIFAR-100-2 | 0,1,7,8,11,12,13,14,15,16 2,3,4,5,6,9,10,17,18,19
STL-10-1 0,2,3,8,9 1,4,5,6,7
STL-10-2 1,4,5,6,7 0,2,3,8,9
Alzheimer Moderate Demented Mild Demented, Non Demented, Very Mild Demented

Table 9. Specifications of different data partitions.

set, through which an approximation for ground-truth la-
bels is maintained for subsequently actual training.

. The support set for meta-disambiguation can be con-
sidered as a special usage of the validation set, which
also contains both labeled positives and negatives, and
is commonly used in other PU learning methods for se-
lecting the best model that exhibits the highest generaliz-
ability as the last step of training to avoid overfitting. In
LaGAM, we simply adopt a different approach to utiliz-
ing the validation set for enhancing model generalizabil-
ity, specifically by leveraging the gradient information
provided by the evaluation loss to guide the label dis-
ambiguation process. In return, the model trained with
LaGAM exhibits high generalizability throughout such
a robust training process and thus can be directly applied
to the test set without any additional steps of model se-
lection. According to the testing results, this will not
cause any accuracy loss, which saves data used for vali-
dation in common methods.

. The actual training of the classifier takes place after
meta-disambiguation, where the model parameters are
optimized using another objective function L5+ 8Lcont,
which is different from the process of Meta-Train and
will not be affected by the support set.

. To support the soundness of LaGAM, we report the ef-
fects of (i)-model directly trained on the valid set; and
(ii)-FixMatch [11], leveraging the valid set for semi-
supervised learning, both of which yield poor perfor-
mance. We suppose that the supervision provided by
such limited and biased data is too weak to train a ro-

bust model, further proving that LaGAM has not gained
benefits from any unfair misuse of the validation set and
sticks to PU setting.

. To better support our perspective, we also provide sen-

sitivity analysis on the size of the support set in Section
C.4, where we can see that minimal support samples are
enough to have a significant effect, which is far beyond
what this amount of data could achieve through provid-
ing supervision signals in binary classification loss. This
result inversely illustrates that the superiority of LaGAM
is not due to the involvement of extra labeled data in
model updating, but the robustness of the whole train-
ing process, where the support set only serves for data
alignment.

Method ‘ CIFAR-10 CIFAR-100-1 CIFAR-100-2

LaGAM 96.2 92.1 86.6
Dist-PU 88.8 65.8 69.1
D.T. ‘ 84.4 Degenerated 66.7
FixMatch |~ 91.1 52.4 57.5

Table 10. Comparisons between LaGAM and unfair misuses of
the validation set.

Ablation CIFAR-10 CIFAR-100
LaGAM 96.6 89.8
Only CL 60.9 54.2
P3MIX-C+CL 83.9 65.7
Dist-PU+CL 91.2 73.1
Only P*MIX-C 76.1 51.4
Only Dist-PU 88.8 69.1

Table 11. Classification accuracy of different methods combined
with group-aware contrastive learning (using ResNet-18 as the
backbone).

B.4. Synergy between Group-Aware Contrastive
Learning and Meta-Disambiguation

While seemingly separated from each other, the two key
components of LaGAM (i.e., meta-disambiguation and
group-aware contrastive learning) work in a collaborative
fashion. As detailed procedure shown in Algorithm 1,
within such a framework, on one hand, the discrimina-
tive representations obtained from contrastive learning pro-
vide more comprehensive semantics for label disambigua-
tion, optimizing the interpretability of gradient backprop-
agation to improve the accuracy of label updates. On the
other hand, the results of label disambiguation further en-
hance the accuracy of representation learning in the man-
ner of dichotomized cut-off, effectively aligning the latent
groups learned by unsupervised clustering with the actual
sub-categories that contribute to binary classification.

Experimental results displayed in Table 3 also demon-
strate that the two components are complementary to each
other and achieve an effect of “1 + 1 > 2”, where the
performance of LaGAM is significantly reduced when ei-
ther of them is removed. To demonstrate the excellent
compatibility of the two components, we also experiment
with the performance of employing group-aware contrastive
learning individually in other state-of-the-art methods. As
shown in Table 11, apparently, the representations learned
by the contrastive learning module alone in the absence of
any form of label disambiguation lack effectiveness, lead-
ing to poor performance on both CIFAR-10 and CIFAR-
100. While being jointly used with PAMIX-C [7] and Dist-
PU [14], group-aware contrastive learning significantly im-
proves their learning capacity and the overall performance,
when using ResNet-18 as the backbone. Despite the im-
provements, LaGAM still holds the best performance, due
to the significant data alignment provided by robust meta-
disambiguation, for which the effect of dichotomized cut-
off can be better promised.

C. Additional Experiments and Analyses
C.1. Experimental Settings

Detailed statistics are shown in Table 8, 9.

Backbone \ Method \ CIFAR-100-1 CIFAR-100-2

VPU 79.144.3 68.1+1.6

7-Layer | P3MIX-E 73.742.7 66.441.8
P3MIX-C 73.642.4 67.842.0

VPU 90.140.1 50.040.1

13-Layer | P3MIX-E 87.3+1.3 54.941.6
P3MIX-C 88.1+0.9 52.9+1.2

Table 12. Classification accuracy of the same methods with differ-
ent CNN backbones.

C.2. Additional Analyses on the Comparison Re-
sults

Learning capacity makes difference. From Table 1, we
can notice that most of the baselines suffer serious degra-
dation on CIFAR-100, where methods like VPU [4] and
P3MIX [7] even degenerate into a trivial solution, assigning
every input to the same class, while LaGAM still maintains
high performance, even approaching the supervised coun-
terpart. We suspect that this is due to a mismatch between
the complexity of the network architecture, the learning ca-
pacity of the model, and the quality of the training data.
To verify our hypothesis, we test the performance of VPU
and P2MIX on CIFAR-100 with a shallower 7-layer CNN,
which is the same as the architecture used for CIFAR-10 and
STL-10. As the results show in Table 12, despite the overall
poor performance caused by the inherent difficulty of the
CIFAR-100 tasks, at least all three baselines have escaped
the dilemma of the trivial solution, exhibiting certain signs
of learning, especially on CIFAR-100-2, which is consistent
with our hypothesis. This also indicates that common base-
lines do indeed lack sufficient learning capacity to adapt
to deeper neural networks, thereby failing to extract more
complex connections between features and labels from the
training samples when facing more challenging tasks, while
LaGAM is able to alleviate this problem by a well-designed
group-aware representation learning module.

Neccessity of group-awareness. To show that awareness
of latent groups can indeed improve the model’s under-
standing of specific binary classification tasks under PU
scenarios, we also wonder: will the classification accuracy
increase if we actively inject more knowledge about the la-
tent categories into the model? Therefore, we conduct a val-
idation experiment on the supervised baseline, firstly pre-
training a ResNet-18 on each dataset with labels of original

categories for 200 epochs, followed by another 200 epochs
of fine-tuning using the binary labels. As results show in
Table 13, the classification accuracies get significantly im-
proved under all setups, indicating that the classifier trained
only with binary labels does not yet have a sufficiently com-
prehensive understanding of the data’s semantics, while the
intention of our well-designed representation learning mod-
ule for mining the grouping patterns underlying PU data can
effectively compensate for this weakness.

Setup w/o Pretraining Pretrained | LaGAM
CIFAR-10-1 98.7£0.5 98.94+0.2 | 96.2+0.5
CIFAR-10-2 98.7£0.5 98.94+0.2 | 96.1+0.3
CIFAR-100-1 92.6+0.7 97.84+0.3 | 92.1+£0.4
CIFAR-100-2 85.910.1 94.4+0.2 | 86.6+0.3

Table 13. Classification accuracy of supervised baseline before
and after pertaining, compared with our LaGAM.

Ablation ID UC DC NS | Acc.

LaGAM v v v /| 898

w/o Neighor Smoothing v /7 v X |84
w/o NS + Dichotomized Cutoff | v/ X X | 87.1
Only Instance Discrimination | v/ X X X | 819

Table 14. Additional ablation study on positive set constructions
in Leone on CIFAR-100-2.

C.3. Additional Ablation Study

Considering that the results shown in Table 5 may not be
significant enough to reflect the effects of dichotomized cut-
off and local neighbor smoothing, here we supplement it
with additional ablation results on CIFAR-100-2. As shown
in Table 14, it is obvious that dichotomized cut-off can sig-
nificantly improve the classification accuracy, while local
smoothing can also slightly boost the model’s performance.

B | CIFAR-10 CIFAR-100

0.0 96.6 89.8
0.1 96.2 89.4
0.2 95.8 89.4
0.5 96.2 89.0

Table 15. Sensitivity analysis on 3 (default 0).

C.4. Additional Sensitivity Analyses

Balance between L. s and Lq . By examining the ef-
fects of adopting different 5 as shown in Table 15, we
can draw a simple conclusion that it is necessary to en-
sure enough intensity of contrastive representation learning
to achieve the optimal performance, for which we set the
default value of 3 to 0 in actual implementation.

Dsup Size ‘ CIFAR-10 CIFAR-100 STL-10

60 96.7 91.7 93.3
100 94.1 86.0 91.1
200 94.5 89.5 90.5
500 96.6 89.8 89.9
800 95.4 88.7 89.1

Table 16. Sensitivity analysis on the size of the support set (default
500).

Minimal support data is enough. Intuitively, to prove
that the effectiveness of meta-disambiguation does not de-
pend on a large amount of support data, which is sometimes
infeasible in real-world practice, we examine the perfor-
mance of LaGAM using Dy, of different sizes. Surpris-
ingly, as results show in Table 16, with only 60 support sam-
ples, LaGAM can achieve the optimal performance. Less
doesn’t mean worse, conversely, more support data is also
not necessarily helpful for better label disambiguation: the
classification accuracy actually does not improve with the
increase in the size of Dy,p, exhibiting a rather unstable
state instead. We suspect that the effectiveness of meta-
disambiguation is related to the consistency of label updates
across different iterations. Specifically, though larger Dy,
can more precisely represent the real sample distribution,
the inconsistency in label updates arises since the evalua-
tion losses for different training batches By, are calculated
on different support batches By, (according to Algorithm
1), which are randomly sampled from Dg,,. This means
that with larger Dy, being separated into different support
batches, training samples may actually be aligned with dif-
ferent distributions, leading to a lack of consistency in the
updates of labels. Additionally, from the perspective of the
influence function, the gradient of the evaluation loss ac-
tually reflects the influence of the training samples on all
instances from By, which can be flattened out by a large
amount of evaluating samples and thus lead to weaker guid-
ance on label updating. However, one of the reasons why
we still set the default size of Dy, as 500 is to keep consis-
tent with the experimental setups used in other baselines [7],
where the size of validation set is usually 500. More impor-
tantly, the outstanding performance achieved with only 60
support samples in our experiments can partly be attributed

to our prior knowledge about the latent groups when uni-
formly selecting support data from each sub-category. In
other words, in real-world scenarios, when the quality of
Dyyp cannot be well promised, we may need a larger D, to
ensure the model’s generalizability. In future work, we may
further explore how to more reasonably allocate validation
data for model selection and meta-disambiguation.

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

(10]

(11]

[12]

[13]

Xuxi Chen, Wuyang Chen, Tianlong Chen, Ye Yuan, Chen
Gong, Kewei Chen, and Zhangyang Wang. Self-pu: Self
boosted and calibrated positive-unlabeled training. In ICML,
pages 1510-1519, 2020. 1, 2,3

Marthinus Du Plessis, Gang Niu, and Masashi Sugiyama.
Convex formulation for learning from positive and unlabeled
data. In ICML, pages 1386-1394, 2015.

Marthinus Christoffel du Plessis, Gang Niu, and Masashi
Sugiyama. Analysis of learning from positive and unlabeled
data. In NeurIPS, pages 703711, 2014. 2

Wenpeng Hu, Ran Le, Bing Liu, Feng Ji, Jinwen Ma,
Dongyan Zhao, and Rui Yan. Predictive adversarial learn-
ing from positive and unlabeled data. In AAAI pages 7806—
7814, 2021. 5

Ryuichi Kiryo, Gang Niu, Marthinus Christoffel du Plessis,
and Masashi Sugiyama. Positive-unlabeled learning with
non-negative risk estimator. In NeurIPS, pages 1675-1685,
2017. 2

Pang Wei Koh and Percy Liang. Understanding black-box
predictions via influence functions. In ICML, pages 1885—
1894. PMLR, 2017. 2, 3

Changchun Li, Ximing Li, Lei Feng, and Jihong Ouyang.
Who is your right mixup partner in positive and unlabeled
learning. In /CLR. OpenReview.net, 2022. 1, 5, 6

Xiaoli Li and Bing Liu. Learning to classify texts using pos-
itive and unlabeled data. In IJCAI, pages 587-594. Morgan
Kaufmann, 2003. 2

Bing Liu, Wee Sun Lee, Philip S. Yu, and Xiaoli Li. Partially
supervised classification of text documents. In /CML, pages
387-394. Morgan Kaufmann, 2002. 2

Zhongzheng Ren, Raymond A. Yeh, and Alexander G.
Schwing. Not all unlabeled data are equal: Learning to
weight data in semi-supervised learning. In NeurIPS, 2020.
3

Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao
Zhang, Han Zhang, Colin A Raffel, Ekin Dogus Cubuk,
Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying
semi-supervised learning with consistency and confidence.
Advances in neural information processing systems, 33:596—
608, 2020. 4

Daiki Tanaka, Daiki Ikami, and Kiyoharu Aizawa. A novel
perspective for positive-unlabeled learning via noisy labels.
CoRR, abs/2103.04685, 2021. 2

Xinrui Wang, Wenhai Wan, Chuanxin Geng, Shaoyuan LI,
and Songcan Chen. Beyond myopia: Learning from positive
and unlabeled data through holistic predictive trends. arXiv
preprint arXiv:2310.04078, 2023. 1

[14] Yunrui Zhao, Qiangian Xu, Yangbangyan Jiang, Peisong

Wen, and Qingming Huang. Dist-pu: Positive-unlabeled
learning from a label distribution perspective. In CVPR,
pages 14461-14470, 2022. 5

	. Additional Clarifications
	. Notations
	. Pseudo-Code of LaGAM
	. Implementation Settings

	. Theoritical Insights
	. Motivation
	. Meta-Disambiguation from an Influence Function Perspective
	. Additional Explanations of the Support Set
	. Synergy between Group-Aware Contrastive Learning and Meta-Disambiguation

	. Additional Experiments and Analyses
	. Experimental Settings
	. Additional Analyses on the Comparison Results
	. Additional Ablation Study
	. Additional Sensitivity Analyses

