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1. Method Details.
1.1. Coordinate System

In practice, the target object is assumed to be placed along
the gravity direction. 1) Canonical coordinate system.
Some prior works (e.g. MVDream and SyncDreamer) adopt
a shared canonical system for all objects, whose axis Zc

shares the same direction with gravity (Fig. 1 (a)). 2) Input
view related system. Wonder3D adopts an independent co-
ordinate system for each object that is related to the input
view. Its Zv and Xv axes are aligned with the UV dimen-
sion of 2D input image space, and its Yv axis is vertical to
the 2D image plane and passes through the center of ROI
(Region of Interests) (Fig. 1 (b)). 3) Camera poses. Won-
der3D outputs 6 views {vi, i = 0, ..., 5} that are sampled
at the XvOYv plane of the input-view related system with
a fixed radius, where the front view v0 is initialized as in-
put view and the other views are sampled with pre-defined
azimuth degrees (see Fig. 1 (b)).

1.2. Textured Mesh Extraction

Optimization Objectives. With the obtained normal maps
G0:N and color images H0:N , we first leverage segmen-
tation models to segment the object masks M0:N from
the normal maps or color images. Specifically, we per-
form the optimization by randomly sampling a batch of
pixels and their corresponding rays in world space P =
{gk, hk,mk,vk}, where gk is normal value of the kth sam-
pled pixel, hk is color value of the kth pixel, mk ∈ {0, 1}
is mask value of the kth pixel, and vk is the direction of
the corresponding sampled kth ray, from all views at each
iteration.

The overall objective function is defined as

L = Lnormal + Lrgb + Lmask

+Reik +Rsparse +Rsmooth

(1)

where Lnormal denotes the normal loss term that has been
discussed in the main manuscript. Lrgb denotes a MSE loss
term that calculates the errors between rendered colors ĥk

and generated colors hk:

Lrgb =
∑
k

(
hk − ĥk

)2

, (2)

Lmask denotes a binary cross-entropy loss term that calcu-
lating errors between the rendered mask m̂k and the gener-
ated mask mk:

Lmask =
∑
k

BCE (mk, m̂k) , (3)

Reik denotes eikonal regularization term that encourages
the magnitude of the SDF gradients to be unit length, p is
a 3D position in the world space, fθ is the signed distance
function, and ∇ denotes the second-order gradient operator
:

Reik =
∑
p

(|∇fθ(p)| − 1)
2 (4)

Rsparse denotes a sparsity regularization term that avoids
floaters of SDF, and τ is a parameter to rescale the SDF
values:

Rsparse =
∑
p

exp(−τ · fθ(p)) (5)

Rsmooth denotes a 3D smoothness regularization term that
enforces the SDF gradients to be smooth in 3D space, and
∆p is a small random shift relative to the 3D position p:

Rsmooth =
∑
p

(|∇fθ(p)| − |∇fθ(p+∆p)|)2 (6)

2. More Results.
2.1. Novel View Synthesis

To further evaluate the generalization and robust perfor-
mance of Wonder3D, we conduct visual comparisons with
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(a) Canonical system (MVDream, SyncDreamer) (b) Input-view related system (Wonder3D)
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Figure 1. Illustration of the coordinate systems and camera poses.

the most recent work Zero123++ [2] and SyncDreamer [1]
on the images with various styles, as shown in Fig. 7. As
you can see, our method keeps correct geometry and robust
performance on images with varying styles.

2.2. Single-view Reconstruction

We present more reconstruction results in Figure 3 and Fig-
ure 5. The readers may refer to supplementary videos for
360◦ visualization.

3. More Discussions.

3.1. Geometric Representation.

In addition to normal maps, various 2D representations en-
code geometric details, such as depth maps. However,
Wonder3D opts for normals as the geometry representa-
tion instead of depth, guided by two considerations: 1)
Global Consistency: Normal maps, defined in the same
system, maintain global consistency across different view-
points. The normal values for a 3D point in the world sys-
tem remain consistent in any view. In contrast, the depth
values for the same 3D point in the world system vary across
different viewpoints. 2) Scale-Invariance: Inferring depth
from a single image poses an ill-posed problem due to scale
ambiguity. The size of an object in captured images is influ-
enced by both the location of the capturing camera and the
true shape scale, introducing ambiguity. On the contrary,
normals remain scale-invariant, avoiding such ambiguity.

To compare the two geometry representations, we ad-
ditionally train Wonder3D using depth instead of normals.
The accompanying Figure 8 illustrates the reconstruction
results using depth representation or normal representation.
It is evident that due to the generated multi-view depth hav-
ing less accurate multi-view consistency, the reconstruction
results are noisier and less accurate.
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Figure 2. Ablation study on multi-view attention.

3.2. Multi-view Consistency.

We conducted an analysis of the effectiveness of the multi-
view attention mechanism, as illustrated in Figure 2. Our
findings show that the multi-view attention greatly enhances
the 3D consistency of the generated multi-view images, par-
ticularly for the rear views. In the absence of the multi-view
attention, the color images of the rear views exhibited unre-
alistic predictions.

3.3. Generalization.

To demonstrate the generalization capability of our method,
we conducted evaluations using diverse image styles, in-
cluding sketches, cartoons, and images of animals, as shown
in Figure 5 and Figure 3. Despite variations in lighting ef-
fects and geometric complexities among these images, our
method consistently generated multi-view normal maps and
color images, ultimately yielding high-quality geometries.



Figure 3. The qualitative results of Wonder3D on various animal
objects.

Figure 4. Combine Wonder3D and Houdini to create lego-style
objects.

4. Potential Applications

4.1. 3D Printing.

Our method Wonder3D presents strong generalization abil-
ity, making it a powerful tool for the application of 3D print-
ing. As shown in Figure 6, Wonder3D can faithfully lift the
2D images into real 3D objects via 3D printing machines.

4.2. Creating Lego-style objects.

The high-quality textured meshes generated by Wonder3D
can be further processed into the lego-style objects via Hou-

dini. The lego-style objects prove the potentials that Won-
der3D can be used as customized 3D assets creation tool in
the open-world game Minecraft.
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Figure 5. The qualitative results of Wonder3D on various styles of images.

Figure 6. The 3D printing results of Wonder3D.
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Figure 7. The qualitative comparisons with Zero123++ and SyncDreamer.
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Figure 8. The results of Color-Normal model and Color-Depth m.
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