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Introduction

This supplementary document provides additional experi-
ments, analysis, and discussion of our work. Specifically,
this document includes the following:

1. Light propagation and image formation model.
2. Proposed regularizer in our optics loss function.
3. Training details.
4. Experiments using latent vectors to generate the style

codes.
5. Experiments using the source image in the discriminator.
6. Additional ablation study: End-to-end training.
7. PSF frequency analysis.
8. Non-blind deconvolution attack.
9. Human evaluation study details.

10. Qualitative results using low-resolution cameras.
11. Additional qualitative results using our camera.
12. Additional hardware experiments.
13. Concluding remarks.
14. Personal data/human subjects discussion.

1. Light propagation and image formation
model

We adopt the image formation model previously established
in other works [2, 7, 15]. More precisely, our approach in-
volves modeling the light transport within the camera using
a differentiable Fourier optics framework [6]. Our optical
system comprises a camera with two thin convex lenses and
a phase mask (ϕ) between them; see Fig. 1. Considering a
thin lens with a focal length f located at a distance d2 from
the sensor, the relationship between the in-focus distance
and the sensor distance in the paraxial ray approximation is
given by the thin-lens equation: 1/f = 1/d1+1/d2. There-
fore, an object at a distance d1 in front of the lens appears in
focus at a distance d2 behind the lens. We first propagate the
light emitted by the point, represented as a spherical wave,
to the lens. The complex-valued wave field immediately

*Project lead; † Equal PI contribution.

Figure 1. Schematic diagram of the light propagation from an ob-
ject at a distance d1 of the lens to the sensor with the focal length
d2. The phase of the spherical light wave coming from a scene
point is modulated by our optimized phase mask and captured by
the camera’s sensor. We take the magnitude-square of the light in-
tensity measured by the sensor to find the values of the PSF. As a
result, Our camera captures privacy-preserving images.

before the lens is given by:

W (u, v) = exp

(
ik

u2 + v2

d1

)
where k = 2π/λ is the wavenumber. The refractive opti-
cal element first delays the phase of this incident wavefront
by an amount proportional to the phase mask ϕ of the op-
tical element at each point (u, v). Equivalently, this phase
transformation can be mathematically represented as

tϕ(u, v) = exp(ik(n(λ)− 1)ϕ(u, v)),

where n(λ) is the wavelength-dependent refractive index of
the optical element material.

The light wave continues to propagate to the camera lens,
which induces the following phase transformation [6]

tL(u, v) = exp

(
−i

k

2d1
(u2 + v2)

)
.

We use a binary circular mask A(u, v) with diameter D
to model the aperture and block light in regions outside the
open aperture. To find the electric field immediately after
the lens, we multiply the amplitude and phase modulations
of the refractive optical element and lens with the input elec-
tric field:

W̃ (u, v) = A(u, v)tϕ(u, v)tL(u, v)W (u, v).
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Finally, the field propagates a distance d2 to the sensor with
the transfer function [6]:

T (fu, fv) = exp
[
ikd2

√
1− (λfu)2 − (λfv)2

]
,

where (fu, fv) are spatial frequencies. This transfer func-
tion is applied in the Fourier domain as:

W̄ (u′, v′) = F−1
{
F

{
W̃ (u, v)

}
· T (fu, fv)

}
,

where F denotes the 2D Fourier transform. Since the sensor
measures light intensity, we take the magnitude-squared to
find the values of the PSF H at each position (u, v) as:

H(u′, v′) = |W̄ (u′, v′)|2.

2. Proposed regularizer in our optics loss func-
tion

In this work, we propose regularizing the PSF during train-
ing to promote symmetric and low frequencies using a pre-
defined defocus regularizer. Specifically, our regularizing
approach ensures the obtained PSF is feasible for fabrica-
tion and implementation in a laboratory setting and pro-
vides faster and more effective convergence during opti-
mization. Our approach represents an improvement over
previous methods, which suffer from unstable training and
convergence difficulties [7]. We perform an ablation study
of our proposed regularizer Hf to show its relevance in our
proposed framework. The PSFs and the privacy-preserving
images obtained from this experiment are shown in Fig 2.

Figure 2. Ablation study of our proposed regularizer Hf . Using
our proposed regularizer leads to faster convergence and more sta-
ble training.

As observed in Fig 2, the absence of our regularizer re-
sults in a PSF that is larger and off-center along the sen-
sor, leading to a noticeable displacement in the captured
image; see the grayscale image corresponding to the blue
channel. Also, as observed from this grayscale image, the
distortion level achieved when not using our regularizer is
significantly less than when using it. Therefore, if our reg-
ularizer is not used, our framework requires additional hy-
perparameter tunning and training for more epochs.

3. Training details
Our proposed approach was implemented using PyTorch,
and the models were trained in a single NVIDIA A100

GPU. In the first stage, for training the heatmap regression
network and the Zernike camera parameters, we use Adam
optimizer [11] with β1 = 0.9 and β2 = 0.99. The learn-
ing rates are set to 5 × 10−4 for the two models. We per-
form the training for 10 epochs using the FFHQ dataset [9],
with a batch size of 32. We use a pre-trained heatmap re-
gression model U∗ to obtain the ground truth for each face
[16]. On the other hand, it is important to note that we do
not train our regression model U from scratch but finetune
from the pre-trained weights. Additionally, we assume an
aberration-free lens as a starting point for start training our
optics, i.e., the camera parameters are configured such that
the acquired image has no distortion at the beginning of
the training. During our training, we finetune the camera
model and the regression network U parameters end-to-end
to gradually distort the optics but preserve useful informa-
tion to extract the heatmap.

In the second stage, to train the generative network, we
set the batch size to 8 and the loss functions hyperparam-
eters with the next values: λsty = 10, λds = 4, λcyc =
5, λLPIPS = 2 × 102, λexpr = 2. During the training, we
use the pre-trained weights provided by the StarGAN2 au-
thors [3] and use their same approach to decrease the loss
weight λds to zero over the 100k iterations linearly and
adopt the non-saturating adversarial loss [5] with R1 reg-
ularization [13]. We use Adam optimizer [11] with β1 = 0
and β2 = 0.99. The learning rates, for G,S, E , and D are
set to 10−4. During the evaluation, we follow the same ap-
proach presented in [3, 8, 17] and use exponential moving
averages for all modules but the discriminator D.

4. Experiments using latent vectors to generate
the style codes

To inject a specific style into our de-identified images, we
adopt StarGAN2 as our generative model. StarGAN2 can
extract and generate styles from a reference image and la-
tent vectors. In the main paper, we present our results when
the style is extracted from a reference image. In this supple-
mentary document, we include some experiments using the
mapping network module presented in StarGAN2 to gener-
ate a style vector and evaluate how our method performs us-
ing such style vectors. Specifically, we load the pre-trained
mapping network and train this module with a learning rate
of 10−6, jointly with our generator during 100k iterations;
some results of this experiment are shown in Fig. 3. As ob-
served in this figure, the quality of the generated faces is low
compared to our results presented in the main document.
Also, we observed that having control over the style gen-
eration in the de-identified image is challenging. Although
the results are not better than those using reference images,
from this experiment, we show that our proposed frame-
work can work with the style extracted from latent vectors;
hence, additional reference images may not be necessary.



Figure 3. Latent-guided synthesis generation on CelebA-HQ.

5. Experiments using the source image in the
discriminator

In contrast to StarGAN2, which trains its discriminator us-
ing source images, our discriminator is trained with refer-
ence images as we aim to prevent filtering facial informa-
tion from the source image during the optimization process.
To assess the effectiveness of this approach, we conducted
ablation studies similar to those presented in the main paper.
Specifically, we analyzed the impact of our cost functions to
enhance task performance while employing the original im-
age in the discriminator. Table 1 presents the quantitative
results of our ablation studies, where the discriminator is
trained using the source image. As the table shows, image
generation quality improves significantly compared to the
results in Tab. 1 of the main document. When the reference
image is used to train the generative model, our proposed
approach achieves landmark detection metrics close to 2.
However, when the original source image is used, the val-
ues are close to 1.65, representing an accuracy increase of
up to 17%. This trend is also observed in the Bounding Box
and FID metrics. On the other hand, the metrics that mea-
sure the quality of face de-identification are lower by up to
approximately 29% when the source image is used in the
discriminator. These results show that facial details are fil-
tered through the discriminator to the generator during the
generative model training, possibly due to the R1 regular-
izer.

6. Additional ablation study: end-to-end train-
ing

In our main document, we introduce our proposed frame-
work, which employs a two-stage training scheme. This

Components DIS↑ Landmarks ↓ Bounding Box ↓ FID↓H L E FR CASIA VGGFace2 MtCNN Dlib MtCNN Dlib
✓ ✓ × 0.544 0.739 0.848 1.538 1.324 3.894 3.025 18.548
✓ × ✓ 0.526 0.693 0.793 1.467 1.268 3.759 2.995 19.713
✓ ✓ ✓ 0.598 0.733 0.880 1.691 1.644 4.431 3.751 22.276

Table 1. Quantitative results of the ablation studies using the
source image in the discriminator. The best result for each pre-
trained face recognition model is in bold, and the second-best re-
sult is underlined.

Figure 4. Samples from a batch of the first and the last iteration
during the end-to-end training ablation study.

approach was chosen for its more stable optimization and
faster convergence in terms of privacy preservation and
face de-identification metrics. In this supplementary doc-
ument, we perform an ablation study on training our pro-
posed framework using an end-to-end (E2E) optimization
approach during 100k iterations. Fig. 4 shows examples of
the source, acquired, output, and reference images from a
batch of the first and the final iterations when training the
E2E model. The figure shows that the module convergence
is slow, the distortion level is insufficient, the privacy is not
well preserved in the image, and the facial heatmap is inac-
curate. As we show in the main document, the information
provided by the heatmap is important to guide the correct
generation of the face position within the de-identified im-
age. These results highlight the importance of two-stage
training in our proposed framework.

7. PSF frequency analysis
We additionally validate our proposed PSF using the mod-
ulation transfer function (MTF) metric [1]. The MTF is
computed as the radially averaged magnitude spectrum of
the PSF. As observed in Fig. 5, the magnitude spectrum
of the proposed PSF decreases significantly for the entire
frequency range, indicating low invertibility characteristics,
especially in the high-frequency range. This explains why
our privacy-preserving images are more robust against de-
convolution attacks than low-resolution or defocus cameras.
Also, observe that the simulated PSF has lower invertibility
than calibrated PSF. This is expected due to our real sys-
tem’s limitations.

8. Non-blind deconvolution attack
In this section, we investigate the robustness of our ac-
quired privacy-preserving images acquired with our opti-
mized camera to deconvolution attacks. In general, there are
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Figure 5. Modulation Transfer Function (MTF) [1] of the point-
spread functions (PSFs). The MTF is computed as the radially av-
eraged magnitude spectrum of the PSF. The PSFs compared are
Defocus PSF [14], random binary, our simulated PSF, and our
calibrated PSF of our proof-of-concept system. The magnitude
spectrum of the proposed PSF decreases significantly for the entire
frequency range, indicating low invertibility characteristics, espe-
cially in the high-frequency range.

two scenarios: in the worst scenario, an attacker has access
to the camera and knows the set of Zernike coefficients that
form the surface profile ϕ, i.e., the PSF is known. Then, the
attacker could perform a non-blind deconvolution to reveal
the identity of a person within the scene. In the other sce-
nario, an attacker can access a large collection of blur im-
ages acquired with our proposed camera but does not know
the PSF and can train a blind deconvolution network. We
explore both scenarios (blind and non-blind deconvolution)
and show the results in Fig. 6 and Fig. 7.

To test the robustness of our designed lens to blind de-
convolution attacks, we trained a deconvolution network
(DeblurGAN [12]) with 28000 sharp and blur (ours) im-
ages/frames from the CelebA-HQ dataset acquired with our
camera. We use the same default parameters for Deblur-
GAN and train the network during 300 epochs. For testing,
we use the images from FFHQ dataset. Reconstruction is
challenging as observed from the results in Fig. 6. The net-
work can reconstruct some objects; however, the face de-
tails are missed, and the network cannot recover people’s
identities.

On the other hand, we also use a non-blind deconvolu-
tion approach (Wiener deconvolution [4]) to try to recover
the underlying scene. This is the worst scenario for our
method since we are assuming an attacker has direct ac-
cess to the camera. As observed from results in Fig. 7,
this approach works better than DeblurGAN as it assumes
the PSF is known beforehand. Although this deconvolution
approach could retrieve some information from the source

Figure 6. Blind deconvolution of privacy-preserving images ac-
quired by our camera using DeblurGAN-v2 [12].

Acquired DeconvolutionSource

Figure 7. Non-blind deconvolution of privacy-preserving images
acquired by our camera using Deep Wiener Deconvolution [4].

face, it is still difficult to recognize the underlying person
from the deconvolution result.

Note that the deconvolution attack described in the main
document corresponds to a more realistic scenario where
the attacker performs a sniffing attack and gets access to one
privacy-preserving image being transferred on the internet.
In that scenario, the attacker can only leverage a state-of-
the-art deconvolution attack to try to recover the identity
of the person. For this scenario, we use the DDRM algo-
rithm [10], which leverages the power of several pre-trained
diffusion models to solve different inversion problems like
deblurring, super-resolution, etc. Note that there is no train-
ing script for DDRM since they propose a plug-and-play
method that only works with pre-trained diffusion models.

https://github.com/VITA-Group/DeblurGANv2/blob/master/config/config.yaml
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Figure 8. Qualitative results of the proposed method using a low-
resolution privacy version on CelebA-HQ dataset.

9. Human evaluation study details

In our research, we conducted a human evaluation to as-
sess the effectiveness of our privacy protection approach
under different scenarios. Figure 9 presents the results from
a survey conducted among 106 individuals from different
ranges of ages, academic backgrounds, and professional
fields. Our survey is divided into five main sections. The
results from the first section were presented in the main doc-
ument. In the figure, we show the results for sections 2-5.
Each plot presents the answers to one section of questions.
Figure 9 (a) presents the results of three questions. For each
question, we generate a new face image with our proposed
face de-identification framework and show it alongside the
other five face images, where one of them corresponds to
the current person we want to protect (source image). Then,
we asked the individuals to identify the source image.

Section (b) (Figure 9 (b)) is similar to (a), but here we
show the privacy-preserving image acquired by our camera
alongside the other five non-blurred face images. Then, we
asked the individuals to identify the source image. Section
(c) (Figure 9 (c)) is similar to (b), but here we show a low-
resolution image instead. Finally, in section (d) (Figure 9
(d)), we show four pairs of images and ask participants to
determine if one of the images is fake, both images are real,
or both are fake. This section aims to assess the quality of
the images generated by our proposed method.

In most cases, subjects responded incorrectly, indicating
that the privacy-preserving images acquired by our camera
effectively preserve privacy by preventing accurate subject
identification. Additionally, the de-identified faces gener-
ated by our proposed method lead individuals to fail to iden-
tify the original subject, which shows our method works as
expected. It is also important to note that success rates are
higher in Section (c), where participants attempt to iden-
tify the subject from a low-resolution image. In the fol-
lowing link, we publish the conducted survey, where read-
ers can explore the questions from the different sections:
https://forms.gle/DQZTA7QibaJ45gGH9. To
further support our research, we invite the readers to par-
ticipate in our survey.

10. Qualitative results using low-resolution
cameras

In the main document, we present quantitative results
for an additional privacy-preserving approach named low-
resolution (Ours-LR). Figure 8 shows qualitative results
obtained from this approach. We show the source image
and their respective low-resolution version in the first two
rows. Our generative model generates new faces using the
low-resolution image version and various reference images
shown in the first column. While the face de-identification
performance is accurate, it finds challenges in effectively
transferring the reference style to the de-identified image.
In some cases, the generated faces retain the style of the
source image or produce a new style that differs from both
the source and reference images. This is because the low-
resolution image preserves high information about the style
from the source image.

11. Additional qualitative results using our
camera

Fig. 10 shows the visual results of the proposed method ap-
plied to face video frames using different references. These
qualitative results show the capability of our method to con-
ceal the true identity of the source but maintain global ge-
ometry (e.g., head position) in the generated faces. How-
ever, the generative model may fail when the face has sig-
nificant rotation. Additionally, Figure 11 shows some re-
sults of rotated faces from the CelebA-HQ dataset where
our generative model outputs can fail or introduce visual
artifacts. This limitation will be explored in future works.

12. Additional hardware experiments
To complement the results obtained from our real camera
prototype, we conducted an experiment using ground truth
images as a reference. Specifically, we employed our best
model as a starting point and fine-tuned it for 30k itera-
tions with a learning rate of 5 × 10−5. Figure 12 shows

https://forms.gle/DQZTA7QibaJ45gGH9
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Figure 9. Human evaluation results. (a), (b), (c), and (d), show the results from sections 2, 3, 4, and 5 of our study, respectively. The results
from section 1 were presented in the main document. In the figure, Q1, Q2, Q3, and Q4 denote the questions in each section.

Figure 10. Visualization of face de-identification performance on an internet video.

Figure 11. Examples of failure cases generated by our proposed
approach on the CelebA-HQ test set.

the results of this experiment. As seen in this figure, when
ground truth faces are used as a reference, our model fails to

achieve the face de-identification task, producing the same
reference with some variations in facial attributes. This fail-
ure is caused by errors when capturing the ground truth im-
age (Gaussian noise), the limited privacy provided by the
15 Zernike polynomials, and an imbalance and low vari-
ability in the data collected from 17 individuals (14 males
and 3 females). However, as shown in Fig. 6 of the main
document, our approach successfully achieves high face de-
identification performance when the model is fine-tuned us-
ing the privacy images acquired by our camera prototype
and the reference from the CelebA-HQ training set.

Finally, Fig. 13 presents qualitative results obtained with
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Figure 12. Qualitative results using the ground truth images as
reference.
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Figure 13. Qualitative results of low-resolution camera, using the
data acquired in the Lab.

a low-resolution camera from the lab data. The model was
fine-tuned using the same hyperparameters as above and the
references from the CelebA-HQ training set. These quali-
tative results with the quantitative results presented in the
main document (Tab. 4), demonstrate the effectiveness of
our method when using both, low-resolution and our pro-
posed privacy-preserving camera.

13. Concluding remarks

As demonstrated in Section 8, our method, while novel,
shares a vulnerability common to encryption systems: if
an attacker gains access to the encryption key (in our case,
the Point Spread Function (PSF) of the designed camera)
they can use non-blind deconvolution algorithms to poten-
tially recover information that may reveal the identity of
the individuals. However, the difficulty of this recovery
depends on the level of distortion introduced by the cam-
era. There is an inherent trade-off between the privacy
level of acquired images and the performance of face de-
identification tasks. Also note that our proposed approach
offers the advantage of being both simulatable and imple-
mentable as a software tool within the firmware of a cam-
era, eliminating the need for actual lens fabrication. This
flexibility enhances the practical feasibility of our method.
Finally, our primary contribution is introducing privacy-

preserving optics for high-level computer vision tasks, such
as face de-identification. However, we showed that using
other privacy cameras such as low-resolution can also be
integrated into our privacy-preserving face de-identification
framework. We believe our work marks a step forward
in the development of more secure and practical privacy-
preserving vision systems.

14. Personal data/human subjects discussion
In this work, we acquired videos from the faces of per-
sons in our optics Lab. In total, 17 subjects between 20
and 40 years old collaborated to acquire the videos with
our prototype camera described in section 4.5 of the main
document. We elaborated an informed consent document
to explain our research and how we would use their video
data. The subjects who accepted participating in the project
signed a hard copy of the informed consent document and
sent it to us. No approval from the institutional review board
(IRB) was required in the country where we acquired the
videos.
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