
DaReNeRF: Direction-aware Representation for Dynamic Scenes

Supplementary Material

In this supplementary material, we provide further
methodological context and implementation details to fa-
cilitate reproducibility of our framework DaReNeRF. We
also showcase additional quantitative and qualitative results
to further highlight the contributions claimed in the paper.

A. Video Presentation
A video presentation of DaReNeRF and its results can
be found online, at https://www.youtube.com/
watch?v=hYQsl6Rbxn4.

B. Dual-Tree Complex Wavelet Transform
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Figure S1. Analysis Filter Bank, for the dual tree complex wavelet
transfrom.

The idea of dual-tree complex wavelet transform
(DTCWT) [10] is quite straightforward. The DTCWT em-
ploys two real discrete wavelet transforms (DWTs). The
first DWT gives the real part of the transform while the
second DWT gives the imaginary part. The analysis filter
banks used to implement the DTCWT is illustrated in Figure
S1. Here h0(n), h1(n) denote the low-pass/high-pass filter
pair for upper filter bank, and g0(n), g1(n) denote the low-
pass/high-pass filter pair for the lower filter bank. The two
real wavelets associated with each of the two real wavelet
transforms as ψh(t) and ψg(t). And the complex wavelet can
be denoted as ψ(t) = ψh(t) + jψg(t). The ψg(t) is approx-
imately the Hilbert transform of ψh(t). The 2D DTCWT
ψ(x, y) = ψ(x)ψ(y) associated with the row-column imple-
mentation of the wavelet transform, where ψ(x) is a complex
wavelet given by ψ(x) = ψh(x) + jψg(x). Then we obtain
for ψ(x, y) the expression:

ψ(x, y) = [ψh(x) + jψg(x)][ψh(y) + jψg(y)]

= ψh(x)ψh(y)− ψg(x)ψg(y)

+ j[ψg(x)ψh(y) + ψh(x)ψg(y)]

(1)

The spectrum of ψh(x)ψh(y) − ψg(x)ψg(y) which corre-
sponds to the real part of ψ(x, y) is supported in two quad-
rants of the 2D frequency plane and is oriented at −45◦.
Note that the ψh(x)ψh(y) is the HH wavelet of a separable
2D real wavelet transform implemented using the filter pair
{h0(n), h1(n)}. Similarly, ψg(x)ψg(y) is the HH wavelet
of a real separable wavelet transform, implemented using
the filters {g0(n), g1(n)}. To obtain a real 2D wavelet ori-
ented at +45◦, we consider now the complex 2-D wavelet
ψ(x, y) = ψ(x)ψ(y), where ψ(y) represents the complex
conjugate of ψ(y). This gives us the following expression:

ψ(x, y) = [ψh(x) + jψg(x)][ψh(y) + jψg(y)]

= ψh(x)ψh(y) + ψg(x)ψg(y)

+ j[ψg(x)ψh(y)− ψh(x)ψg(y)]

(2)

The spectrum of ψh(x)ψh(y) + ψg(x)ψg(y) is supported
in two quadrants of the 2D frequency plane and is ori-
ented at +45◦. We could obtain four more oriented real
2D wavelets by repeating the above procedure on the follow-
ing complex 2-D wavelets: ϕ(x)ψ(y), ψ(x)ϕ(y), ϕ(x)ψ(y)
and ψ(x)ϕ(y), where ψ(x) = ψh(x) + jψg(y) and ϕ(x) =
ϕh(x)+ jϕg(y). By taking the real part of each of these four
complex wavelets, we obtain four real oriented 2D wavelets,
in additional to the two already obtain in 1 and 2:

ψi(x, y) =
1√
2
(ψ1,i(x, y)− ψ2,i(x, y)), (3)

ψi+3(x, y) =
1√
2
(ψ1,i(x, y) + ψ2,i(x, y)) (4)

for i = 1, 2, 3, where the two separable 2-D wavelet bases
are defined in the usual manner:

ψ1,1(x, y) = ϕh(x)ψh(y), ψ2,1(x, y) = ϕg(x)ψg(y),

ψ1,2(x, y) = ψh(x)ϕh(y), ψ2,2(x, y) = ψg(x)ϕg(y),

ψ1,3(x, y) = ψh(x)ψh(y), ψ2,3(x, y) = ψg(x)ψg(y),

(5)

We have used the normalization
1√
2

only so that the sum

and difference operation constitutes an orthonormal oper-
ation. From the imaginary parts of ψ(x)ψ(y), ψ(x)ψ(y),
ϕ(x)ψ(y), ψ(x)ϕ(y), ϕ(x)ψ(y) and ψ(x)ϕ(y), we could
obtain six oriented wavelets given by:

ψi(x, y) =
1√
2
(ψ3,i(x, y) + ψ4,i(x, y)), (6)

ψi+3(x, y) =
1√
2
(ψ3,i(x, y)− ψ4,i(x, y)) (7)

for i = 1, 2, 3, where the two separable 2D wavelet bases
are defined as:

ψ3,1(x, y) = ϕg(x)ψh(y), ψ4,1(x, y) = ϕh(x)ψg(y),

ψ3,2(x, y) = ψg(x)ϕh(y), ψ4,2(x, y) = ψh(x)ϕg(y),

ψ3,3(x, y) = ψg(x)ψh(y), ψ4,3(x, y) = ψh(x)ψg(y),

(8)

https://www.youtube.com/watch?v=hYQsl6Rbxn4
https://www.youtube.com/watch?v=hYQsl6Rbxn4


Figure S2. Visual Comparison on Dynamic Scenes (Plenoptic Data). K-Planes and HexPlane are concurrent decomposition-based methods.
As shown in the four zoomed-in patches, our method better reconstruct fine details and captures motion. To see the figure animated, please
view the document with compatible software, e.g., Adobe Acrobat or KDE Okular.

Table S1. Results of Plenoptic Video Dataset. We report results of each scene

Model Flame Salmon Cook Spinach Cut Roasted Beef
PSNR ↑ D-SSIM ↓ LPIPS ↓ PSNR ↑ D-SSIM ↓ LPIPS ↓ PSNR ↑ D-SSIM ↓ LPIPS ↓

DaReNeRF-S 30.294 0.015 0.089 32.630 0.013 0.100 33.087 0.013 0.092
DaReNeRF 30.441 0.012 0.084 32.836 0.011 0.090 33.200 0.011 0.091

Flame Steak Sear Steak Coffee Martini
DaReNeRF-S 33.259 0.011 0.081 33.179 0.011 0.075 30.160 0.016 0.092
DaReNeRF 33.524 0.009 0.077 33.351 0.009 0.072 30.193 0.014 0.089

Thus we could obtain six oriented wavelets from both real
and imaginary part.

C. Additional Results on Various Datasets
C.1. Plenoptic Video Dataset [6]

The quantitative results for each scene are presented in Table
S1, while additional visualizations comparing DaReNeRF
with current state-of-the-art methods, HexPlane [1] and K-
Planes [3], are provided in Figure S3. Notably, DaReNeRF
demonstrates superior recovery of texture details. We also
provide an animated qualitative comparison in Figure S2.
Furthermore, comprehensive visualizations of DaReNeRF
on all six scenes in the Plenoptic dataset are shown in Figure
S4 and Figure S5.

C.2. D-NeRF Dataset [8]

We provide quantitative results for each scene in Table S2,
while additional visualizations comparing DaReNeRF with
current state-of-the-art methods, HexPlane [1] and 4D-GS
[12], are shared in Figure S6. We also provide further visu-
alization in a video attached to this supplementary material.
Remarkably, although 4D-GS incorporates a deformation
field, DaReNeRF still outperforms it in certain cases from
the D-NeRF dataset. Furthermore, comprehensive visualiza-
tions of DaReNeRF on six scenes in the Plenoptic dataset
are shown in Figure S7 and the failure cases are shown in

Figure S8.

C.3. NeRF Synthetic Dataset

The quantitative results for each case are presented in Table
S3, while additional visualizations comparing our represen-
tation with DWT [9] based representation method, are shown
in Figure S9. Furthermore, comprehensive visualizations of
eight scenes in the NeRF dataset are shown in Figure S10
and in the attached video.

C.4. NSVF Synthetic Dataset

The quantitative results for each case are presented in Table
S4, while additional visualizations comparing our represen-
tation with DWT [9] based representation method, are shown
in Figure S11. Furthermore, comprehensive visualizations of
eight scenes in the NSVF dataset are shown in Figure S12.

C.5. LLFF Dataset

The quantitative results for each case are presented in Table
S5, while additional visualizations comparing our represen-
tation with DWT [9] based representation method, are shown
in Figure S13. Furthermore, comprehensive visualizations
of eight scenes in the NSVF dataset are shown in Figure S14
and in the video.
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Figure S3. Visual Comparison on Dynamic Scenes (Plenoptic Data). K-Planes and HexPlane are concurrent decomposition-based methods.
As shown in the four zoomed-in patches, our method better reconstructs fine details and captures motion.

D. Additional Ablation Studies

D.1. Sparsity Masks

We evaluate the performance of our direction-aware repre-
sentation at various sparsity levels controlled by the mask
loss weight λm. The quantitative and qualitative results on
the NSVF dataset with different sparsity levels are presented
in Table S6 and Figure S15.

D.2. Wavelet Levels

We investigated the impact of scene reconstruction perfor-
mance across different wavelet levels, and the results are pre-
sented in Table S7. Interestingly, we observed that increasing
the wavelet level did not lead to significant performance im-
provements. Conversely, we noted a substantial increase in
both training time and model size with the increment of
wavelet level. As a result, throughout all experiments, we
consistently set the wavelet level to 1.

D.3. Training Time Analysis

To effectively demonstrate the efficiency of our proposed
DaReNeRF, we conducted a comparative analysis against
HexPlane under identical training durations of 2 hours
(equivalent to HexPlane-100k) and 12 hours (equivalent to
HexPlane-650k). The results, outlined in Table S8, reveal

that across varying training periods, our proposed DaReN-
eRF consistently outperforms the baseline HexPlane.

D.4. Training Data Sparsity Analysis

In order to delve deeper into the few-shot capabilities of
our proposed direction-aware representation, we conducted
experiments with varying levels of training data sparsity.
This was achieved by randomly dropping training frames
while ensuring sufficient data remained to effectively learn
motion on the D-NeRF dataset. The corresponding results are
presented in Table S9. Remarkably, our proposed DaReNeRF
consistently outperforms the baseline across different levels
of training data sparsity.

E. Training Details
E.1. Plenoptic Video Dataset [6]

Plenoptic Video Dataset is a multi-view real-world video
dataset, where each video is 10-second long. For training,
we set R1 = 48, R2 = 48 and R3 = 48 for appearance,
where R1, R2 and R3 are basis numbers for direction-aware
representation of XY − ZT , XZ − Y T and Y Z − XT
planes. For opacity, we set R1 = 24, R2 = 24 and R3 = 24.
The scene is modeled using normalized device coordinate
(NDC) [7] with min boundaries [−2.5,−2.0,−1.0] and max
boundaries [2.5, 2.0, 1.0].



Table S2. Results of D-NeRF Dataset. We report results of each scene

Model Hell Warrior Mutant Hook
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

T-NeRF 23.19 0.93 0.08 30.56 0.96 0.04 27.21 0.94 0.06
D-NeRF 25.02 0.95 0.06 31.29 0.97 0.02 29.25 0.96 0.11

TiNeuVox-S 27.00 0.95 0.09 31.09 0.96 0.05 29.30 0.95 0.07
TiNeuVox-B 28.17 0.97 0.07 33.61 0.98 0.03 31.45 0.97 0.05

HexPlane 24.24 0.94 0.07 33.79 0.98 0.03 28.71 0.96 0.05

DaReNeRF-S 25.71 0.95 0.04 34.08 0.98 0.02 29.04 0.96 0.04
DaReNeRF 25.82 0.95 0.04 34.17 0.98 0.01 28.96 0.96 0.04

Bouncing Balls Lego T-Rex
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

T-NeRF 37.81 0.98 0.12 23.82 0.90 0.15 30.19 0.96 0.13
D-NeRF 38.93 0.98 0.10 21.64 0.83 0.16 31.75 0.97 0.03

TiNeuVox-S 39.05 0.99 0.06 24.35 0.88 0.13 29.95 0.96 0.06
TiNeuVox-B 40.73 0.99 0.04 25.02 0.92 0.07 32.70 0.98 0.03

HexPlane 39.69 0.99 0.03 25.22 0.94 0.04 30.67 0.98 0.03

DaReNeRF-S 42.24 0.99 0.01 25.24 0.94 0.03 31.75 0.98 0.03
DaReNeRF 42.26 0.99 0.01 25.44 0.95 0.03 32.21 0.98 0.02

Stand Up Jumping Jacks Average
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

T-NeRF 31.24 0.97 0.02 32.01 0.97 0.03 29.51 0.95 0.08
D-NeRF 32.79 0.98 0.02 32.80 0.98 0.03 30.50 0.95 0.07

TiNeuVox-S 32.89 0.98 0.03 32.33 0.97 0.04 30.75 0.96 0.07
TiNeuVox-B 35.43 0.99 0.02 34.23 0.98 0.03 32.64 0.97 0.04

HexPlane 34.36 0.98 0.02 31.65 0.97 0.04 31.04 0.94 0.04

DaReNeRF-S 34.47 0.98 0.02 31.99 0.97 0.03 31.82 0.97 0.03
DaReNeRF 34.58 0.98 0.02 32.21 0.97 0.03 31.95 0.97 0.03

Table S3. Results of NeRF Synthetic Dataset

Bit Precision Method Size(MB) Avg Chair Drums Ficus Hotdog Lego Materials Mic Ship

32-bit KiloNeRF ≤ 100 31.00 32.91 25.25 29.76 35.56 33.02 29.20 33.06 29.23
32-bit CCNeRF (CP) 4.4 30.55 - - - - - - - -
8-bit∗ NeRF 1.25 31.52 33.82 24.94 30.33 36.70 32.96 29.77 34.41 29.25
8-bit cNeRF 0.70 30.49 32.28 24.85 30.58 34.95 31.98 29.17 32.21 28.24
8-bit∗ PREF 9.88 31.56 34.55 25.15 32.17 35.73 34.59 29.09 32.64 28.58
8-bit∗ VM-192 17.93 32.91 35.64 25.98 33.57 37.26 36.04 29.87 34.33 30.64
8-bit∗ VM-192 (300) + DWT 0.83 31.95 34.14 25.53 32.87 36.08 34.93 29.42 33.48 29.15

8-bit∗ VM-192 (300) + Ours 8.91 32.42 36.05 29.40 35.26 36.37 25.58 33.26 29.82 33.63

During the training, DaReNeRF starts with a space grid
size of 643 and double its resolution at 20k, 40k and 70k
to 5123. The emptiness voxel is calculated at 30k, 50k and
80k. The learning rate for representation planes is 0.02 and

the learning rate for V RF and neural network is 0.001. All
learning rates are exponentially decayed. We use Adam [4]
optimization with β1 = 0.9 and β2 = 0.99. We apply the
total variational loss on all representation planes with loss



Table S4. Results of NSVF Synthetic Dataset

Bit Precision Method Size(MB) Avg Bike Lifestyle Palace Robot Spaceship Steamtrain Toad Wineholder

32-bit KiloNeRF ≤ 100 33.77 35.49 33.15 34.42 32.93 36.48 33.36 31.41 29.72
8-bit∗ VM-192 17.77 36.11 38.69 34.15 37.09 37.99 37.66 37.45 34.66 31.16
8-bit∗ VM-48 4.53 34.95 37.55 33.34 35.84 36.60 36.38 36.68 32.97 30.26
8-bit∗ CP-384 0.72 33.92 36.29 32.29 35.73 35.63 34.58 35.82 31.24 29.75
8-bit∗ VM-192 (300) + DWT 0.87 34.67 37.06 33.44 35.18 35.74 37.01 36.65 32.23 30.08

8-bit∗ VM-192 (300) + Ours 8.98 36.24 38.78 34.21 37.22 38.02 38.61 37.79 34.39 30.97

Table S5. Results of LLFF Dataset

Bit Precision Method Size(MB) Avg Fern Flower Fortress Horns Leaves Orchids Room T-Rex

8-bit cNeRF 0.96 26.15 25.17 27.21 31.15 27.28 20.95 20.09 30.65 26.72
8-bit∗ PREF 9.34 24.50 23.32 26.37 29.71 25.24 20.21 19.02 28.45 23.67
8-bit∗ VM-96 44.72 26.66 25.22 28.55 31.23 28.10 21.28 19.87 32.17 26.89
8-bit∗ VM-48 22.40 26.46 25.27 28.19 31.06 27.59 21.33 20.03 31.70 26.54
8-bit∗ CP-384 0.64 25.51 24.30 26.88 30.17 26.46 20.38 19.95 30.61 25.35
8-bit∗ VM-192 (300) + DWT 1.34 25.88 24.98 27.19 30.28 26.96 21.21 19.93 30.03 26.45

8-bit∗ VM-192 (300) + Ours 13.67 26.48 25.02 28.23 31.07 27.81 21.24 19.68 31.82 26.97

weight λ = 1e − 5 for spatial planes and λ = 2e − 5 for
spatial-temporal planes. For DaReNeRF-S we set weight of
mask loss as 1e− 11.

We follow the hierarchical training pipeline suggested in
[6]. Both DaReNeRF and DaReNeRF-S use 100k iterations,
with 10k stage one training, 50k stage two training and 40k
stage three training. Stage one is a global-median-based
weighted sampling with γ = 0.02; stage two is also a global-
median based weighted sampling with γ = 0.02; stage three
is a temporal-difference-based weighted sampling with γ =
0.2.

In evaluation, D-SSIM is computed as
1−MS − SSIM

2
and LPIPS [13] is calculated us-

ing AlexNet [5].

E.2. D-NeRF Dataset [8]

We set R1 = 48, R2 = 48 and R3 = 48 for appearance and
R1 = 24, R2 = 24 and R3 = 24 for opacity. The bounding
box has max boundaries [1.5, 1.5, 1.5] and min boundaries
[−1.5,−1.5,−1.5]. During the training, both DaReNeRF
and DaReNeRF-S starts with space grid of 323 and upsam-
pling its resolution at 3k, 6k and 9k to 2003. The emptiness
voxel is calculated at 4k, 8k and 10k iterations. Total training
iteration is 25k. The learning rate for representation planes
are 0.02 and learning rate for V RF and neural network is
0.001. All learning rates are exponentially decayed. We use
Adam [4] optimization with β1 = 0.9 and β2 = 0.99. In
evaluation, LPIPS [13] is calculated using VGG-Net [11]
following previous works.

For both the Plenoptic Video dataset and the D-NeRF

dataset, we set the learning rate of the masks in DaReNeRF-S
same as their representation planes and we employ a compact
MLP for regressing output colors. The MLP consists of 3
layers, with a hidden dimension of 128.

E.3. Static Scene

For three static scene dataset NeRF synthetic dataset, NSVF
synthetic dataset and LLFF dataset, we followed the ex-
perimental settings of TensoRF [2]. We trained our model
for 30000 iterations, each of which is a minibatch of 4096
rays. We used Adam [4] optimization with β1 = 0.9 and
β2 = 0.99 and an exponential learning rate decay scheduler.
The initial learning rates of representation-related parameters
and neural network (MLP) were set to 0.02 and 0.001. For
the NeRF synthetic and NSVF synthetic datasets, we adopt
TensoRF-192 as the baseline and update the alpha masks at
the 2k, 4k, 6k, 11k, 16k, and 26k iterations. The initial grid
size is set to 1283, and we perform upsampling at 2k, 3k, 4k,
5.5k, and 7k iterations, reaching a final resolution of 3003.
For the LLFF dataset, we adopt TensoRF-96 as the baseline
and update the alpha masks at the 2.5k, 4k, 6k, 11k, 16k, and
21k iterations. The initial grid size is set to 1283, and we per-
form upsampling at 2k, 3k, 4k and 5.5k iterations, reaching a
final resolution of 6403. The learning rates of masks are set
same as learning rates of representation-related parameters.
We employ a compact MLP for regressing output colors. The
MLP consists of 3 layers, with a hidden dimension of 128.



Table S6. Quantitative results on NSVF dataset with different sparsity.

Sparsity λm Size(MB) Avg Bike Lifestyle Palace Robot Spaceship Steamtrain Toad Wineholder

99.2% 1.0× 10−10 1.16 35.36 38.01 33.69 35.70 37.23 37.83 37.26 32.58 30.56
97.3% 5.0× 10−11 3.18 35.81 38.52 34.01 36.33 37.79 38.22 37.46 33.33 30.82
94.2% 2.5× 10−11 8.98 36.24 38.78 34.21 37.22 38.02 38.61 37.79 34.39 30.97

- 0 135 36.34 38.86 34.37 37.25 38.06 38.72 37.89 34.46 31.09

Table S7. Wavelet Level Analysis of Direction-Aware Represen-
tation, evaluated on NVSF data.

Level PSNR ↑ Model Size (MB) ↓ Training Time (min) ↓
1 36.34 135 23
2 36.45 152 41
3 36.49 163 55

Table S8. Time eval. on Plenoptic (FlameSteak/CutRoastBeef).

Model Eval. after training for 2hrs Eval. after training for 12hrs
PSNR ↑ D-SSIM ↓ LPIPS ↓ PSNR ↑ D-SSIM ↓ LPIPS ↓

HexPlane 31.92 / 32.71 .012 / .015 .081 / .094 32.08 / 32.55 .011 / .013 .066 / .080
DaReNeRF 33.01 / 32.98 .010 / .013 .079 / .092 33.62 / 33.43 .009 / .010 .063 / .076

Table S9. Evaluation on D-NeRF with various training set sparsity.

Model 75% training set (average) 50% training set (average)
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

HexPlane 29.85 0.95 0.05 28.03 0.94 0.06
DaReNeRF 30.95 0.96 0.04 29.28 0.96 0.05

References
[1] Ang Cao and Justin Johnson. Hexplane: A fast representation

for dynamic scenes. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
130–141, 2023. 2

[2] Anpei Chen, Zexiang Xu, Andreas Geiger, Jingyi Yu, and
Hao Su. Tensorf: Tensorial radiance fields. In European
Conference on Computer Vision, pages 333–350. Springer,
2022. 5

[3] Sara Fridovich-Keil, Giacomo Meanti, Frederik Rahbæk War-
burg, Benjamin Recht, and Angjoo Kanazawa. K-planes:
Explicit radiance fields in space, time, and appearance. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 12479–12488, 2023. 2

[4] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv preprint arXiv:1412.6980,
2014. 4, 5

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Im-
agenet classification with deep convolutional neural networks.
Advances in neural information processing systems, 25, 2012.
5

[6] Tianye Li, Mira Slavcheva, Michael Zollhoefer, Simon Green,
Christoph Lassner, Changil Kim, Tanner Schmidt, Steven
Lovegrove, Michael Goesele, Richard Newcombe, et al. Neu-

ral 3d video synthesis from multi-view video. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 5521–5531, 2022. 2, 3, 5

[7] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik,
Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf:
Representing scenes as neural radiance fields for view syn-
thesis. Communications of the ACM, 65(1):99–106, 2021.
3

[8] Albert Pumarola, Enric Corona, Gerard Pons-Moll, and
Francesc Moreno-Noguer. D-nerf: Neural radiance fields
for dynamic scenes. In Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition, pages
10318–10327, 2021. 2, 5

[9] Daniel Rho, Byeonghyeon Lee, Seungtae Nam, Joo Chan Lee,
Jong Hwan Ko, and Eunbyung Park. Masked wavelet repre-
sentation for compact neural radiance fields. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 20680–20690, 2023. 2

[10] Ivan W Selesnick, Richard G Baraniuk, and Nick C Kings-
bury. The dual-tree complex wavelet transform. IEEE signal
processing magazine, 22(6):123–151, 2005. 1

[11] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 5

[12] Guanjun Wu, Taoran Yi, Jiemin Fang, Lingxi Xie, Xiaopeng
Zhang, Wei Wei, Wenyu Liu, Qi Tian, and Xinggang Wang.
4d gaussian splatting for real-time dynamic scene rendering.
arXiv preprint arXiv:2310.08528, 2023. 2

[13] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages
586–595, 2018. 5



Figure S4. Visualizations on flame steak, sear steak and cut roasted beef scene.



Figure S5. Visualizations on cook spinach, flame salmon and coffee martini scene.
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Figure S6. Visual Comparison on Dynamic Scenes (D-NeRF Data). 4D-GS and HexPlane are decomposition-based and deformation-based
methods.



Figure S7. Visualizations on D-NeRF dataset



Figure S8. Visualizations on failure cases from D-NeRF dataset
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Figure S9. Visual comparison on NeRF synthetic dataset.



Figure S10. Visualizations on NeRF synthetic dataset.
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Figure S11. Visual comparison on NSVF synthetic dataset.



Figure S12. Visualizations on NSVF synthetic dataset.
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Figure S13. Visual comparison on LLFF synthetic dataset.



Figure S14. Visualizations on LLFF synthetic dataset.



𝜆m = 0𝜆m = 2.5 × 10−11𝜆m = 5 × 10−11𝜆m = 1 × 10−10

Figure S15. Qualitative results on NSVF dataset with different sparsity.
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