
3D Geometry-aware Deformable Gaussian Splatting for Dynamic View Synthesis

Supplementary Material

This supplementary material provides additional imple-
mentation details and experimental results. First, we pro-
vide the implementation details of our proposed method.
Then, we provide additional experimental results in the
form of visualization and discuss the limitations and im-
pacts of our method. We conclude with discussions on fu-
ture work. The source code, network model, and results will
be released.

1. Implementation Details
1.1. Loss Function

We apply the photometric loss and regularization for our
optimization:

Ltotal = Lphoto + ωLmotion, (1)

Lphoto = (1− λ)Lrgb + λLD−SSIM , (2)

where Lrgb is the L1 loss and LSSIM is the structural simi-
larity loss between the rendered image Ĉt and ground truth
image Ct. Generally, within a dynamic scene, the propor-
tion of dynamic points is much smaller than that of the static
points. Thus the motion amplitude at dynamic points is not
too large. We proposed to exploit this fact by introducing
the motion regularization term Lmotion = ∥∆xt∥1. In our
experiments, we set λ = 0.2 and ω = 0.01.

1.2. Network Architecture

Here, we introduce the network architecture adopted in our
method. The Gaussian Canonical Field consists of two
branches: the geometric branch and the identity branch. As
shown in Fig. 1, the geometric branch takes the position of
voxel points as input and outputs the geometrical features
fgeo. It is roughly composed of three parts, namely Down-
VoxelBlock, ResidualBlock, and UpVoxelBlock. The spe-
cific structures of these three parts are shown in Fig. 2. For
the identity branch, we use a simple MLP to get the embed-
ding features fidentity , which maintains the independence
of point features. Then we concatenate the features from
the geometric branch and the identity branch, and pass them
into another MLP to get fused features Ffuse. Finally, we
take the fused features Ffuse, position of Gaussians γ(x) and
time γ(t) into a decoder to get the deformations of position,
rotation, and scale from the canonical space to time space.
In Fig. 4, we demonstrate the specific structure of MLPs.
Additionally, the intermediate hidden layers are shown in
blue, the number inside each block signifies the vector’s
dimension. All layers are standard fully-connected layers,

black arrows between layers indicate the ReLU activations.
γ(·) is a positional encoding function, we use L = 10 for
position, and L = 6 for timestamp. Similar to NeRF [10],
we use a skip connection that concatenates the input to the
third layer.

Figure 1. Overall architecture of the geometric branch, which cap-
tures local geometric features using a 3D U-Net.
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Figure 2. Detailed structure of DownVoxelBlock, ResidualBlock,
and UpVoxelBlock.

2. Results and Discussions

2.1. Results on Neural 3D Video dataset

We further evaluated our method on Neural 3D Video
dataset [9], which includes several videos captured with
synchronized fixed GoPro camera system. We have eval-
uated our method in the following four scenarios: Cook
Spinach, Cut Roast Beef, Flame Steak and Sear Steak, each
scene includes from 17 to 20 cameras for training and one
central camera for evaluation. Following previous works,
we downsample the images to 1352 × 1014 and report
the per-scene PSNR, SSIM and LPIPS for each method, as
shown in Table 1. We find our method is struggling in these
long-time series. Although our method maintains high fi-
delity restoration in static regions, its capability is severely
limited in dynamic regions.
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Figure 3. Visualization of Canonical Point Cloud. We show the evolution of point clouds in the canonical space with respect to the
number of iterations.

Table 1. Quantitative results on scenes from the Neural 3D Video Synthesis

Scene Cook Spinach Cut Roast Beef Flame Steak Sear Steak

Method PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
MixVoxels [15] 31.39 0.931 0.113 31.38 0.928 0.111 30.15 0.938 0.108 30.85 0.940 0.103
K-Planes [4] 31.23 0.926 0.114 31.87 0.928 0.114 31.49 0.940 0.102 30.28 0.937 0.104
Hexplanes‡ [2] 31.05 0.928 0.114 30.83 0.927 0.115 30.42 0.939 0.104 30.00 0.939 0.105
Hyperreel [1] 31.77 0.932 0.090 32.25 0.936 0.086 31.48 0.939 0.083 31.88 0.942 0.080
NeRFPlayer† [14] 30.58 0.929 0.113 29.35 0.908 0.144 31.93 0.950 0.088 29.13 0.908 0.138
StreamRF [8] 30.89 0.914 0.162 30.75 0.917 0.154 31.37 0.923 0.152 31.60 0.925 0.147
SWAGS [13] 31.96 0.946 0.094 31.84 0.945 0.099 32.18 0.953 0.087 32.21 0.950 0.092
Ours 31.39 0.947 0.144 29.87 0.944 0.156 31.35 0.954 0.129 32.62 0.955 0.130

Figure 4. Detailed structure of MLPs we have used in our method.

2.2. More Visualization Results

Point Cloud For the D-NeRF synthetic scenes [12], we ran-
domly initialize 150000 points as the initial point cloud. We

visualize the point cloud of the scene in the canonical space
with different iterations. In Fig. 3, it can be observed that we
can reconstruct the scene even from a random point cloud.
Moreover, in complex scenes such as Peel Banana in the
HyperNeRF dataset [11], we can also reconstruct the scene
even if there are no dynamic parts in the input point clouds,
as shown in Fig. 3. Our supplementary video also presents
the trajectory of the scene’s point cloud as it evolves over
time. Our supplementary video is available at our home-
page: https://npucvr.github.io/GaGS/.
Quantitative Results We show more qualitative compar-
isons in Fig. 6 and Fig. 7 for D-NeRF synthetic dataset [12]
and HyperNeRF dataset [11]. In our supplementary video,
we also showcase the temporal interpolation capability of
our method when maintaining a fixed camera viewpoint
while time evolves. Additionally, we demonstrate the abil-
ity to synthesize novel viewpoints while keeping the time
fixed and observing the scene from arbitrary viewpoints.
Temporal Interpolation We show the temporal interpola-
tion ability of our method. In Fig. 8 and Fig. 9, we fix
the camera viewpoint and show the results for temporal
changes of the D-NeRF synthetic dataset [12] and Hyper-
NeRF dataset [11]. Our method shows great temporal inter-
polation abilities for both synthetic and real datasets. More
results are presented in our homepage.



p0 p1 p2 p3 p4
Se

ar
St

ea
k

Fl
am

e
St

ea
k

C
oo

k
Sp

in
ac

h

Figure 5. Results on Neu3DV dataset.

2.3. Limitations and Impacts

Limitations First, our proposed method represents the de-
formation of Gaussians from the canonical space to time
space. However, it can only chronicle a point within the
scene from start to finish, lacking the capability to depict
a point that abruptly emerges or disappears in the scene
at a specific moment. Second, our proposed method es-
sentially describes the motion and deformation of points in
the canonical space. It necessitates acquiring precise cam-
era poses in advance. However, in the context of dynamic
scene modeling, obtaining accurate camera poses is inher-
ently very challenging. Our approach is also constrained by
this limitation. Last, our method struggles to describe ex-
cessively complex motions and long time videos, such as
rapid movements of objects within the scene. This chal-
lenge results in the network facing difficulties in estimating
point motions, ultimately leading to failures, as shown in
Fig. 5, we provide some cases in the test camera on Neu3DV
dataset [9]. Due to the lack of explicit modeling of mo-
tion, our method exhibits insufficient capability in captur-
ing fine-grained movements over long temporal sequences.
However, it still maintains the ability to describe general
motions, such as the swinging of curtains and human body
movements.

Broader Impacts Our proposed method can be applied to
various industries, including visual effects synthesis in the
film industry, game modeling, autonomous driving simula-
tion, and more. For the film industry and game modeling,
dynamic scenes can be synthesized by our method. In au-
tonomous driving simulation, our proposed method can pro-
vide more data from different viewpoints, which will con-
tribute to the advancement of autonomous driving.

2.4. Future Work

In the future, we plan to exploit the motion mask to dis-
tinguish the dynamic points and static points of the scene,
which will decrease the computing resource by only esti-
mating the deformation of dynamic points. Also, we will
investigate explicit motion modeling by exploiting the fore-
ground and background motion segmentation cues.
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Figure 6. Qualitative comparison on the D-NeRF synthetic dataset. We show synthesized images on the D-NeRF synthetic dataset of
our method and other competing methods.
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Figure 7. Qualitative comparison on the HyperNeRF dataset. We show synthesized images on the HyperNeRF dataset of our method
and other competing methods.
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Figure 8. Temporal Interpolation Capability on the D-NeRF synthetic dataset. We show the temporal interpolation capabilities of our
method. Specifically, we showcase our ability to perform time interpolation by maintaining a fixed camera viewpoint while observing the
temporal changes in scene content.
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Figure 9. Temporal Interpolation Capability on HyperNeRF dataset. We show the temporal interpolation capabilities of our method.
Specifically, we showcase our ability to perform time interpolation by maintaining a fixed camera viewpoint while observing the temporal
changes in scene content.
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