BSNet: Box-Supervised Simulation-assisted Mean Teacher for 3D Instance
Segmentation

1. Overview

In this supplementary material, we begin by presenting a more detailed comparison of quantitative metrics on ScanNetV2 [3]
validation set (Section 4). We then provide additional details on gravity,collision constraints and more implementation details
(Section 5). Consequently, we present statistical results regarding the real overlapping samples in the ScanNetV2 training
set, such as the distribution of class pairs, the number of overlapping samples for each class pair, and etc (Section 6). To
further validate the effectiveness of the proposed method, we conduct additional ablation studies (Section 7) and provide
more visualizations (Section 8). Finally, we discuss the limitations of our approach and outline potential future research
directions in this field (Section 9).

2. Results of S3DIS 6-fold cross-validation.

As shown in the following Table 1, our method outperforms existing SoTA approaches, demonstrating its effectiveness.

Table 1. Results of S3DIS 6-fold cross-validation.

Method mAP AP@50 || Method | mAP AP@50
GaPro + SoftGroup 51.4 65.8 H GaPro + ISBNet 51.5 66.8

Ours + SoftGroup 54.1 (+2.7)  67.0 (+1.2) Ours + ISBNet 579 (+6.4)  68.5 (+1.7)

3. Results of 3D object detection.

Due to the same level of annotations between box-supervised 3D instance segmentation and fully supervised 3D object
detection, our approach can be effectively extended to 3D object detection. As illustrated in Table 2, our approach performs
well in 3D object detection, surpassing the current state-of-the-art methods and the GaPro versions of 3DIS methods. It
achieves a notable increase of 2.6 in Box AP@50.

Table 2. 3D object detection results on ScanNetV2 validation set.

Method Venue Box AP@50 Box AP@25
VoteNet [12] ICCV 19 33.5 58.6
3DETR [9] ICCV 21 47.0 65.0
GroupFree [7] ICCV 21 52.8 69.1
HyperDet3D [20] CVPR 22 57.2 70.9
FCAF3D [13] ECCV 22 57.3 71.5
CAGroup3D [18] NeurIPS 22 61.3 75.1
GaPro [10] + SPFormer [15] ICCV 23 65.9 78.9
GaPro + ISBNet [11] ICCV 23 67.0 77.1
Ours + SPFormer - 67.0 80.0
Ours + ISBNet - 69.6 79.3

4. Detailed Results on ScanNetV2 Validation Set

The detailed results for each category on ScanNetV?2 validation set are reported in Table 3. As the table illustrates, ours +
ISBNet achieves the best performance in 7 out of 18 categories, ours + SPFormer achieves the best performance in 8 out of



18 categories. The two of them work together to achieve 14 out of 18 categories. The superior performance demonstrates the
effectiveness of our method.

Table 3. Full quantitative results of mAP on ScanNetV2 validation set. For reference purposes, we show the results of fully supervised
methods in gray. Best performance of box supervised methods is in boldface.
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PointGroup [5] 34.8 [59.7 37.6 26.7 253 71.2 69 26.6 14.0 229 339 20.8 24.6 41.6 29.8 434 385 758 27.5
SSTNet [6] 49.4 1777 56.6 25.8 40.6 81.8 22.5 38.4 28.1 429 52.0 40.3 43.8 489 549 52.6 557 929 343
SoftGroup [17] 458 166.6 484 324 377 723 143 37.6 27.6 352 42.0 342 56.2 569 39.6 47.6 54.1 88.5 33.0
DKNet [19] 50.8 | 73.7 53.7 36.2 42.6 80.7 22.7 35.7 35.1 42.7 46.7 519 399 572 52.7 524 542 913 372
Mask3D [14] 55.2 |78.3 543 435 47.1 829 359 48.7 37.0 54.3 59.7 53.3 47.7 474 55.6 48.7 63.8 94.6 39.9
ISBNet [11] 54.5 |76.3 58.0 39.3 47.7 83.1 28.8 41.8 359 49.9 53.7 48.6 51.6 66.2 56.8 50.7 60.3 90.7 41.1
SPFormer [15] 56.3 [83.7 53.6 31.9 45.0 80.7 38.4 49.7 41.8 52.7 55.6 55.0 57.5 56.4 59.7 51.1 62.8 95.5 41.1
Box2Mask [2] 39.5 |70.6 41.7 23.1 274 73.8 8.8 31.0 144 27.1 45.1 31.5 343 443 46.0 51.1 314 83.6 259
WISGP [4] + PointGroup | 31.3 {40.2 347 262 27.2 69.1 59 199 8.7 18.2 309 26.2 30.7 33.1 23.8 339 39.1 73.7 224
WISGP + SSTNet 35.2 |45.5 32.8 23.8 304 753 8.8 239 17.6 27.8 33.0 284 31.4 23.1 329 427 394 834 259
GaPro [10] + ISBNet 50.6 |76.3 45.5 28.5 46.0 82.7 21.8 41.3 22.0 51.3 51.3 559 445 52.8 59.7 49.5 52.8 90.2 39.5
GaPro + SPFormer 51.1 |78.3 47.2 41.2 47.0 80.0 21.3 39.5 19.2 50.2 54.5 547 44.8 52.1 547 57.2 52.0 86.3 39.7
Ours + ISBNet 52.8 [65.3 57.1 36.7 453 83.0 25.5 40.0 28.2 53.5 57.5 57.3 46.2 62.7 56.4 529 522 90.7 39.2
Ours + SPFormer 53.3 |73.6 52.1 40.3 49.6 82.4 25.5 38.3 22.0 53.1 56.6 59.6 49.5 559 62.0 55.0 52.8 90.9 40.3

5. More Model Details

Gravity and Collision Constraints. Regarding the gravity constraint, we only need to change the z coordinates of the two
foreground instances. We directly align their bottoms with the ground (the XY plane). After that, we need to move the
instance to maintain collision constraint. In this stage, only x and y coordinates will be changed. Specifically, we start by
voxelizing the two instances seperately. Once these two instances occupy the same voxel space, we consider them to be in
collision. Subsequently, we perform an offset along the x-axis or y-axis for one of the instances until the collision is resolved.

More Implementation Details. As to the training setting of the pseudo-labeler SAFormer, we use adamw [8] and a
cosinelr scheduler with a maximal learning rate of 10-4. We voxelize the point clouds with the size of 0.02m. We set
the number of layers of both local-structure attention and global-context attention to 4. The decay of the Mean Teacher
paradigm [16] is set as 0.999. The above settings remain the same for ScanNetV2 and S3DIS [1].

6. Statistical Results Regarding the Real Overlapping Samples

As shown in Figure 1, we draw the distribution of class pairs that make up the true overlapping samples in the ScanNetV2
training set. The blue square represents the existence of the corresponding class pair, the gray square represents a class pair
symmetric to the class pair represented by the blue square, the white square represents the absence of a corresponding class
pair. It is worth noting that, we only consider the 18 instance categories on ScanNetV2 while the finer-grained categories
on ScanNet200 are ignored. Take the first row as an example, there are 17 class pairs, including (A: cabinet, A: cabinet),
(A: cabinet, B: bed), (A: cabinet, C: chair), ..., and (A: cabinet, R: otherfurniture). Consequently, we count the number of
overlapping samples for each class pair. The statistical results are shown in Figure 2. The horizontal axis is in order: (A, A),
(A, B), (A, O), ..., (B, B), (B, ), (B, D), ..., (R, R). From Figure 2, we can find that the class pair (chair, table) is the largest
class pair among all class pairs. As shown in Figure 3 and Figure 4, we calculate the mean p and variance o of the distances
between the center points of each class pair.

6.1. About the results from the class-agnostic approach.

As shown in Table 4, we replace the original SD with a class-agnostic approach (random) and observe a slight decrease in
mAcc, but it still surpasses the "Base". Additionally, we compare 3DIS results, as indicated in the columns for mAP and
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Figure 1. Distribution of class pairs which make up the true overlapping samples. Here, the blue square represents the existence of
the corresponding class pair, the gray square represents a class pair symmetric to the class pair represented by the blue square, the white
square represents the absence of a corresponding class pair.

AP@50. The results demonstrate that even with the adoption of a class-agnostic approach, high-quality pseudo-labels can
still be generated, leading to accurate 3DIS outcomes. We also show results on ScanNet200 validation set in Table 5, which
demonstrate the effectiveness of our method for datasets with a large number of classes.

Table 4. Quality of pseudo-labels in overlapping areas. Here, "Base" refers to C4 in Table 4 of the mainscript.

Setting | mAcc | mAP AP@50 || Setting | mAcc | mAP AP@50
Base 55.3 / / Base + random + GCC + ABP | 57.5 | 520 70.9
Base + random | 56.7 / / Base + SD + GCC + ABP 59.6 | 52.8 71.7
Base + SD 58.5 / / / / / /
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Figure 2. Distribution of the number of class pairs. The horizontal axis is in order: (A,A), (A,B), (A,C), ..., (B,B), (B,C), (B,D), ..., (R,
R).
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Figure 3. The mean 1 of the distances between the center points of each class pair. The horizontal axis is in order: (A,A), (A,B), (A,C),
-, (B,B), (B,C), (B,D), ..., (R, R).

6.2. About the statistical distance.

In the first row of Figure 6, the distance modification is indeed large due to the existence of individual specificity, but in
the other rows, it is small. In fact, the distance modification induced by constraints is minimal in the majority of samples,
as shown in Table 6. Assuming the distance mean for each class pair is denoted as m,; and the distance variance is v;, the

N ) N N |gori_ gsim
number of class pairs is N. AvgMean = Zl:Tlm , AvgStd = Zl% , AvgErr = % (s € {m,v}). To further

validate the effectiveness of statistical distance, the corresponding experiment is conducted in Table 7.
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Figure 4. The variance o of the distances between the center points of each class pair. The horizontal axis is in order: (A,A), (A,B),
(A0, ..., (B,B), (B,C), (B,D), ..., (R, R).

Table 5. Results on ScanNet200 validation set. Here, "Ours + ISBNet" refers to training the network using pseudo-labels generated
through the class-agnostic approach.

Method ‘ mAP  %full AP@50  %full

ISBNet 245 / 32.7 /
Ours + ISBNet | 23.0 93.9% 31.2 95.4%

Table 6. Difference between origin and simulated samples.

Sample ‘ AvgMean  AvgStd

Origin samples 1.085 0.330
Simulated samples 0.989 0.336

AvgErr | 0.09 0.018

Table 7. Influence of statistical distance.

Setting ‘ mAcc

W statistical distance 59.6
W/o statistical distance 58.7

7. More Ablation Studies

7.1. About the hyperparameters in Equation 11.

We perform the experiment in the Table 8.

7.2. Designs for the layer number of Local-Global Aware Attention

We implement an ablation experiment about the layer number of Local-Global Aware Attention. As shown in the Table 9, the
best performance is achieved when both Num_LA and Num_GA are fixed at 8, which yields only a 0.2 improvement over



Table 8. Ablation study about the hyperparameters in Equation 11.

M A2 A3 | mAP AP@S0 || A1 X2 As | mAP  AP@S0

0.1 1 1 51.8 70.8 05 L5 1 52.6 71.7

0.5 1 1 52.8 71.6 0.5 1 05 | 522 71.2
1 1 1 51.8 70.9 0.5 1 1.5 | 525 71.3

05 05 1 523 71.0 / / / / /

the performance when Num_LA and Num_GA are fixed at 4. Therefore, considering the balance between performance and
parameter quantity, we set both Num_LA and Num_GA as 4.

Table 9. Ablation study on Local-Global Aware Attention. Here, Num_LA represents the number of layers of the local-structure
attention, Num_GA represents the number of layers of the global-context attention.

Num_LA Num_GA mAcc

2 2 57.7
2 4 58.5
4 2 589
4 4 59.6
8 8 59.8

7.3. Designs for the threshold ~ of Simulation-assisted Mean Teacher

We conduct an ablation experiment on the threshold 7 of Simulation-assisted Mean Teacher. As shown in Table 10, the best
result is achieved when 7 is 0.9. A high threshold will filter out many significant pseudo-labels, while a low threshold will
retain too many noisy ones. Therefore, we conduct such experiments to select hyperparameters to optimize this trade-off.

Table 10. Ablation study on the threshold 7 of Simulation-assisted Mean Teacher.

T mAcc
0.6 57.3
0.7 58.9
0.8 58.7
0.9 59.6

0.95 58.2

8. More Visualization

In Figure 5, we visualize and compare the generated pseudo-labels of several methods. As shown in this figure’s blue
circles, our method can generate more precise pseudo-labels. Take the second row as an example, Box2Mask incorrectly
predicts some table points as chair, and Gapro incorrectly predicts some chair points as table. At the same time,our approach
successfully distinguishes between instances of the two categories, obtaining more accurate pseudo-labels.

To offer a more comprehensive illustration of the simulated sample generation process, we present qualitative results in
Figure 6. The visualization highlights the success of our method in generating simulated samples, showcasing the meaningful
combination of individual 3D shapes. This visual representation underscores the effectiveness and quality of our simulated
samples, contributing to a better understanding of the generation process.



9. Discussions about the Limitations and Future Research

Our approach endeavors to leverage the neural network to learn local structure features and global relationship information
from overlapping samples. In non-overlapping regions, where point clouds exist solely within a single bbox, the labels are
definite. However, in overlapping areas, where point clouds belong to two different bboxes, the labels are undetermined. To
address the lack of labels for points in overlapping areas, we employ the Mean Teacher approach to generate and continuously
refine pseudo-labels. To enhance the quality of pseudo-labels and expedite the convergence of Mean Teacher, we introduce the
Simulation-assisted branch. By utilizing simulated samples, this branch fundamentally equips the network with the ability
to distinguish overlapping areas. However, a challenge arises: there are a few background points within non-overlapping
areas. When assigning labels to non-overlapping regions, inevitably some of these background points are misclassified as
foreground. Effectively filtering out background points in non-overlapping areas becomes crucial. This helps the network
recognize the correct instance shapes and enhances the ability to filter out background points in overlapping areas. Therefore,
how to filter out background points in non-overlapping areas may be a future research hotspot. One potential solution is
to leverage the RGB-D images and a strongly robust segmentation model, such as SAM, to filter out background points in
non-overlapping regions. We will also seek inspiration from some 2D amodal instance segmentation works.
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Figure 5. More qualitative results on ScanNetV2 training set. Our approach produces highly accurate pseudo instance masks, particu-
larly in overlapping areas (blue circles).
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Figure 6. More qualitative visualization results of our Simulated Sample Generation.



	. Overview
	. Results of S3DIS 6-fold cross-validation.
	. Results of 3D object detection.
	. Detailed Results on ScanNetV2 Validation Set
	. More Model Details
	. Statistical Results Regarding the Real Overlapping Samples
	. About the results from the class-agnostic approach.
	. About the statistical distance.

	. More Ablation Studies
	. About the hyperparameters in Equation 11.
	. Designs for the layer number of Local-Global Aware Attention 
	. Designs for the threshold  of Simulation-assisted Mean Teacher 

	. More Visualization
	. Discussions about the Limitations and Future Research

