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Supplementary Material

A. Overview
This supplementary material provides the following addi-
tional content about experimental results and analysis:

B. Visualizations of Place Features Using t-SNE

C. Tunable Parameters

D. Additional Results on Challenging Datasets

E. Additional Ablations on Cross-image Encoder

F. Effects of Batch Size

G. Additional Ablations on MulConvAdapter

H. Effects of Adaptation on the Used SPM Feature

I. Comparison to Other Methods with the Same Training
Dataset

J. Datasets Details

K. Compared Methods Details

L. Additional Qualitative Results and Failure Cases

M. Limitations

Note that the experiments in this supplementary material
are conducted as in the main paper. That is, PCA is used
to reduce the descriptor dimensionality to 4096-dim when
comparing our method with other methods. However, it is
not used by default in ablation experiments.

B. Visualizations of Place Features using t-SNE
In this section, we use the t-SNE [17] method to map our
place features to 2-dimensional space and visualize their
distribution. We employ pre-trained DINOv2, adapted DI-
NOv2 (with our MulConv adapter), and our entire network
(with our MulConv adapter and cross-image encoder) to ex-
tract features of 432 images from 36 different places (12
images per place). There exist variations in viewpoints and
conditions among the 12 images of the same place. Suppl.
Fig. 1 illustrates the visualization results. It can be ob-
served that some features of different places, which are ex-
tracted by pre-trained DINOv2, are not well separated. This
demonstrates the limited discriminability of place features
extracted by pre-trained DINOv2. However, after perform-
ing our adaptation, the adapted DINOv2 successfully distin-
guishes most of the places, while a few places are still not
well distinguished. By applying both our adaptation and the
cross-image encoder, our proposed model effectively clus-
ters image features of the same place and separates features

Method Total Backbone Adapter Others Tunable
CosPlace-V - 14.7 0 0.3 7.3+145.7
CosPlace-R - 23.5 0 4.2 26.3+582.8
FullTuning 97.6 86.6 0 11.0 97.6
Ours 106.8 86.6+9.2 9.2 11.0 20.2

Supplementary Table 1. The number of parameters (M) in mod-
els. We mainly focus on tunable parameters (the last column).
“CosPlace-V” and “CosPlace-R” represent the CosPlace methods
using VGG16 and ResNet50 to produce 512-dim and 2048-dim
features, respectively. Taking CosPlace-V as an example, since it
adds multiple classifiers (for multiple groups of training data) af-
ter the model during training, the tunable parameters contain the
parameters of the trainable part in the model (7.3M) and all classi-
fiers (145.7M). “FullTuning” represents full fine-tuning of the DI-
NOv2 backbone (including our cross-image encoder) without the
adapter. The “Others” in the table are the aggregation module for
CosPlace, the cross-image encoder for FullTuning and Ours (the
parameters of GeM pooling are so few that they can be ignored).

of different places, i.e., pulling the features of the same
place closer together and pushing the features of different
places farther apart. This clearly demonstrates the efficacy
of our approach in addressing the challenge of perceptual
aliasing.

It is worth mentioning that this visualization method
commonly used in classification tasks has rarely been used
in previous VPR works. We can use it thanks to the recently
proposed GSV-Cities dataset [1] (and the SF-XL dataset
[4]) that split place images into a finite number of cate-
gories.

C. Tunable Parameters

We provide detailed model parameters as shown in Suppl.
Table 1 (using CosPlace as baseline). Since we use
an adapter-based parameter-efficient fine-tuning method to
train our model, the tunable part of our model only contains
the adapter inserted into the backbone and the cross-image
encoder after the backbone. The number of tunable param-
eters of our model is 20.2M, which is only about 1/5 of the
full fine-tuning DINOv2 (with the cross-image encoder).
This is also less than that of CosPlace using ResNet50 to
produce 2048-dim features (including 26.3M tunable pa-
rameters in the model and 582.8M tunable parameters of
classifiers).



(a) Result of pre-trained DINOv2 (b) Result of adapted DINOv2 (c) Result of our model
Supplementary Figure 1. Visualizations of place features in 2-dimensional space using t-SNE. We use the features of 432 images from
36 different places (i.e. 36 categories) for visualization. (a), (b), and (c) are the results of pre-trained DINOv2, adapted DINOv2 (using
our MulConv adapter), and our complete model (using MulConv adapter and cross-image encoder), respectively. Note that the positions
of two points in (b) are improper, that is, the corresponding feature representation will suffer perceptual aliasing.

Method Nordland AmsterTime SVOX-Night SVOX-Rain SVOX-Sun
R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

SFRS [7] 16.0 24.1 28.7 29.7 48.5 55.6 28.6 40.6 46.4 69.7 81.5 84.6 54.8 68.3 74.1
CosPlace [4] 58.5 73.7 79.4 38.7 61.3 67.3 44.8 63.5 70.0 85.2 91.7 93.8 67.3 79.2 83.8
MixVPR [2] 76.2 86.9 90.3 40.2 59.1 64.6 64.4 79.2 83.1 91.5 97.2 98.1 84.8 93.2 94.7
EigenPlaces [5] 71.2 83.8 88.1 48.9 69.5 76.0 58.9 76.9 82.6 90.0 96.4 98.0 86.4 95.0 96.4
CricaVPR (ours) 90.7 96.3 97.6 64.7 82.8 87.5 85.1 95.0 96.7 95.0 98.2 98.7 93.7 98.4 98.6

Supplementary Table 2. Comparison to SOTA methods on challenging datasets. The best is highlighted in bold and the second is
underlined. We employ PCA to reduce the descriptor dimension of our method to 4096-dim.

D. Additional Results on Challenging Datasets

The main paper has presented the R@1 results of our
method compared to state-of-the-art (SOTA) methods on
three challenging datasets, i.e., Nordland, AmsterTime, and
SVOX (SVOX-Night, SVOX-Rain). Here, we provide the
complete R@1/R@5/R@10 results as shown in Suppl. Ta-
ble 2, complementing another challenging query subset
(SVOX-Sun) of the SVOX dataset. Before our method was
proposed, MixVPR and EigenPlaces had their own advan-
tages on these challenging datasets, and no method com-
pletely outperformed the other methods. However, our pro-
posed CricaVPR achieves better performance compared to
all previous methods on these datasets, particularly outper-
forming other methods by a large margin on Nordland, Am-
sterTime, and SVOX-Night, which are quite difficult.

Moreover, we also provide the results of our CricaVPR
on Pitts250k (97.5% R@1) in Section I.

E. Additional Ablations on Cross-image En-
coder

In the main paper, we have combined the proposed cross-
image correlation awareness implemented by our cross-

image encoder with three different global representations
to demonstrate its effectiveness. In this section, we fur-
ther compare the performance of constructing the cross-
image encoder using different numbers of transformer en-
coder layers, and the results are shown in Suppl. Table 3.
Compared to not using the cross-image encoder (No en-
coder), incorporating the cross-image encoder constructed
with any number of transformer encoder layers leads to sig-
nificant performance improvements. However, when only
one transformer encoder layer is used, there is still a no-
ticeable performance gap compared to using multiple trans-
former encoder layers (on Pitts30k and Tokyo24/7), indi-
cating that a single transformer encoder layer alone cannot
sufficiently correlate images within a batch. The best per-
formance is achieved when using two transformer encoder
layers, which is the recommended configuration.

F. Effects of Batch Size

Since our method correlates all images within a batch and
utilizes the cross-image variations (including images from
the same place and images from different places) as a cue
to guide the representation learning in VPR, the training
batch size is also a factor that may have an impact on per-



Cross-image encoder
Pitts30k Tokyo24/7 MSLS-val

R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

No encoder 90.6 95.9 97.2 85.1 93.3 95.6 85.5 93.2 94.3

Transformer encoder layer ×1 92.9 96.6 97.5 92.7 95.2 96.5 89.6 95.7 96.4
Transformer encoder layer ×2 94.8 97.4 98.1 93.0 97.1 97.8 89.9 95.4 96.2
Transformer encoder layer ×3 94.5 97.4 98.1 93.0 96.2 97.8 88.8 94.7 96.1

Supplementary Table 3. The results of constructing the cross-image encoder using different numbers of transformer encoder layers.

Batch Size with cross- Pitts30k Tokyo24/7 MSLS-val
(Number of Places) image encoder R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

NP = 16 × 89.5 95.3 96.8 75.6 89.2 91.4 80.9 90.4 92.7
NP = 32 × 89.9 95.2 96.7 81.3 91.1 93.0 83.0 93.1 93.8
NP = 64 × 90.7 95.9 97.5 84.4 94.3 96.5 84.1 92.3 94.2
NP = 72 × 90.6 95.9 97.2 85.1 93.3 95.6 85.5 93.2 94.3
NP = 16 ✓ 94.6 97.0 97.7 87.9 94.9 96.2 84.1 92.6 94.2
NP = 32 ✓ 94.8 97.4 98.0 91.1 94.9 96.8 85.0 93.1 95.1
NP = 64 ✓ 94.9 97.5 98.1 92.4 95.6 97.1 88.1 95.0 95.1
NP = 72 ✓ 94.8 97.4 98.1 93.0 97.1 97.8 89.9 95.4 96.2

Supplementary Table 4. Results of different training batch sizes, i.e., different numbers of places (4 images per place). NP is the
abbreviation of “Number of Places”. We provide the results with or without the cross-image encoder.

formance. The training dataset GSV-Cities [1] provides 4
images per place by default, and we use different batch
sizes, i.e., one batch contains different numbers of places, to
train our models. It should be noted that we use the multi-
similarity (MS) loss to train the models (same as MixVPR),
which inherently leads to a result that a larger batch size is
more conducive to providing hard sample pairs to train a ro-
bust model. Therefore, we also provide the results obtained
at different batch sizes without using the cross-image en-
coder as a reference. The results are shown in Suppl. Table
4. Regardless of whether the cross-image encoder is used,
the performance degradation caused by the smaller batch
size is not obvious on Pitts30k, but is significant on more
difficult Tokyo24/7 and MSLS. When using the cross-image
encoder, the absolute R@1 drops caused by using the small-
est batch size (NP = 16) compared to the largest batch
size (NP = 72) on Pitts30k, Tokyo24/7, and MSLS-val are
0.2%, 5.1%, and 5.8% respectively. When the cross-image
encoder is not used, the absolute R@1 drops caused by that
are 1.1%, 9.5%, and 4.6% respectively. This indicates that:
1) More challenging (test) datasets require larger batch size
to train a more robust model. 2) Our proposed cross-image
encoder, to some extent, reduces the demand for a larger
batch size when using the MS loss for training.

In addition, we also conduct experiments to study the
impact of different batch sizes during inference, i.e., infer-
ence batch size. The results are as shown in Suppl. Table
5. Since our method learns cross-image correlation-aware

Batch Pitts30k Tokyo24/7 MSLS-val
Size R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10

1 91.6 95.7 96.9 89.5 94.6 96.2 88.5 95.1 95.7
4 93.9 97.2 97.7 87.3 93.7 94.6 88.0 95.5 96.5
8 94.8 97.4 98.1 91.7 96.2 97.5 89.1 95.1 95.9

16 93.7 97.0 98.1 93.0 97.1 97.8 89.9 95.4 96.2
32 93.0 96.9 97.9 92.7 96.2 97.5 88.9 95.5 96.2

Supplementary Table 5. Results of different inference batch size.

representation during training, setting the batch size to 1
during testing makes our cross-image encoder ineffective,
further leading to the gap between training and testing, i.e.,
performance in this case will be reduced. Besides, an infer-
ence batch size that is too small (e.g., 4) will lead to unstable
results (even worse than when it equals 1). Although the in-
ference batch size that achieves the best performance on dif-
ferent datasets does not appear to be fixed (too small or too
large will reduce performance), setting it to 16 can achieve
excellent results on all datasets. So we set it to 16 (except
on Pitts30k/Pitts250k we set it to 8 for better results).

G. Additional Ablations on MulConvAdapter
We have verified the effectiveness of the proposed multi-
scale convolution adapter (MulConvAdapter) by comparing
it with the vanilla adapter and ConvAdapter (i.e., Convpass
[9]). To further demonstrate the advantages of MulConvA-



Conv Pitts30k Tokyo24/7 MSLS-val
Size R@1 R@5 R@10 R@1 R@5 R@10 R@1 R@5 R@10
1×1 94.5 97.2 97.8 91.7 95.9 97.1 88.2 95.3 95.5
3×3 94.3 97.1 97.9 91.7 95.2 96.8 87.6 94.3 95.8
5×5 94.7 97.3 97.8 90.2 94.6 96.8 87.6 95.1 96.4

MulConv 94.8 97.4 98.1 93.0 97.1 97.8 89.9 95.4 96.2

Supplementary Table 6. The results of convolution-based adapters.
“MulConv” is our MulConvAdapter. Note that the single convo-
lution kernel adapter here has one more skip connection than the
3×3 convolution adapter (ConvAdapter) in the main paper.

Ablated versions
Pitts30k Tokyo24/7 MSLS-val

R@1 R@5 R@1 R@5 R@1 R@5
FrozenDINOv2-GeM 79.2 90.1 65.4 83.8 40.8 51.5
FrozenDINOv2-SPM 74.8 90.1 49.8 67.0 45.4 60.7

Adapt-GeM 87.1 94.0 70.2 85.4 78.4 87.8
Adapt-SPM 90.6 95.9 85.1 93.3 85.5 93.2

Supplementary Table 7. The results of the GeM and SPM repre-
sentation using a frozen DINOv2 or adapted DINOv2 backbone.
All results here have been provided in Table 4 and Table 5 of our
main paper.

dapter over adapters using only a single-size convolution
kernel, we compare MulConvAdapter with three adapter
variants employing three different convolution kernel sizes
(1×1, 3×3, and 5×5). To be fair, the three adapters based
on a single convolution kernel use skip connection like our
MulConvAdapter (the ConvAdapter in the main paper does
not), that is, our MulConvAdapter differs from these three
adapters only in the convolution kernel. The results are
presented in Suppl. Table 6. Except for our MulConvA-
dapter, the adapters based on 1×1, 3×3, and 5×5 convolution
kernels have advantages in different datasets (and metrics),
indicating that it is difficult for an adapter with a single-
size convolution kernel to perform well for all place images
on the VPR task. In contrast, our MulConvAdapter inte-
grates these three convolution kernels to consistently pro-
vide proper local information, thus achieving the best per-
formance.

H. Effects of Adaptation on the Used SPM Fea-
ture

In our method, we mainly use the spatial pyramid model
(SPM) representation that combines the class token and
the GeM feature. An interesting phenomenon is that
when using the frozen DINOv2 as the backbone, the SPM
feature (FrozenDINOv2-SPM) performs worse than GeM
(FrozenDINOv2-GeM) on Pitts30k and Tokyo24/7 (see
Suppl. Table 7). However, after using our adaptation,
Adapt-SPM performs much better than Adapt-GeM. This

Method Training set
Pitts250k MSLS-val

R@1 R@5 R@10 R@1 R@5 R@10
CosPlace‡ SF-XL 92.3 97.4 98.4 87.4 94.1 94.9
NetVLAD† GSV-Cities 90.5 96.2 97.4 82.6 89.6 92.0
CosPlace† GSV-Cities 91.5 96.9 97.9 84.5 90.1 91.8
CricaVPR GSV-Cities 97.5 99.4 99.7 90.0 95.4 96.4

Supplementary Table 8. The results of methods trained on GSV-
Cities. The suffix †/‡ means that the method is different from the
main paper on the backbone and/or training set. Since SF-XL is
built for CosPlace (or it is part of CosPlace), CosPlace‡ trained on
SF-XL is better than CosPlace† trained on GSV-Cities.

Method Training set
Pitts30k Pitts250k

R@1 R@5 R@10 R@1 R@5 R@10
SFRS Pitts30k 89.4 94.7 95.9 90.7 96.4 97.6

MixVPR GSV-Cities 91.5 95.5 96.3 94.1 98.2 98.9
EigenPlaces SF-XL 92.5 96.8 97.6 94.1 97.9 98.7
CricaVPR* Pitts30k 93.0 96.9 97.9 95.9 99.0 99.5

Supplementary Table 9. Results of CricaVPR* trained on Pitts30k.

shows that our adaptation makes the combined class token
and GeM features in the SPM representation more compat-
ible.

I. Comparison to Other Methods with the
Same Training Dataset

Most methods (except MixVPR) use different training
datasets than our method. The GSV-Cities dataset used in
our method has been shown to achieve better results than the
datasets with weak supervision (e.g., Pitts30k and MSLS)
[1]. Training different methods with the same dataset can
promote fair comparisons. However, completely achieving
it is hard as some methods are designed based on the charac-
teristics of a certain (type of) dataset, and training on others
may make some components of them meaningless. To min-
imize the impact of the training dataset on results, we use
the results (reported in the MixVPR paper) of NetVLAD
and CosPlace (both based on ResNet50) trained on GSV-
Cities for a more fair comparison. The results are shown
in Suppl. Table 8 and our method still significantly out-
performs others. Note that in this section we have added
the results on Pitts250k (larger but easier than Pitts30k).
Besides, we also provide the results of training our model
on the smallest/weakest Pitts30k dataset in Suppl. Table 9.
Our model trained on Pitts30k still gets SOTA results (bet-
ter than EigenPlaces trained on SF-XL and much better than
SFRS also trained on Pitts30k).

J. Datasets Details
Pitts30k [15] is derived from Google Street View panora-
mas with GPS labels. It consists of images from 24 different



viewpoints for each place in urban scenes, exhibiting signif-
icant viewpoint variations, moderate condition variations,
and a small number of dynamic objects. Pitts30k is a subset
of Pitts250k (but harder than Pitts250k for most methods).
In our experiments, we mainly use the Pitts30k test set.

Tokyo24/7 [16] comprises a total of 75,984 database im-
ages and 315 query images from urban environments. The
query images are selected from a pool of 1,125 images cap-
tured from 125 places, each involving 3 different viewpoints
and 3 different times of the day. This dataset shows view-
point variations and significant condition changes, particu-
larly day-night changes.

MSLS (Mapillary Street-Level Sequences) [19] is a
large-scale VPR dataset that encompasses more than 1.6
million images captured in urban, suburban, and natural en-
vironments across 30 cities spanning six continents. This
dataset provides GPS coordinates and compass angles for
each image, and shows various changes caused by illumi-
nation, weather, season, viewpoint, dynamic objects, and
so on. It is divided into three sets: training, public valida-
tion (MSLS-val), and withheld test (MSLS-challenge). To
ensure comprehensive evaluation, we assess the model on
both the MSLS-val and MSLS-challenge sets, as done in
previous works [8, 11, 12].

Nordland [14] captures images from a fixed viewpoint
in the front of a train in four seasons. This dataset exhibits
significant variations in conditions such as season and light-
ing, without viewpoint changes. Its images primarily depict
suburban and natural environments, and the ground truth in-
formation is provided through frame-level correspondence.
Following previous works [5], we extract images at 1FPS,
and use the winter images as queries and the summer im-
ages for reference (i.e. database).

AmsterTime [20] contains more than a thousand query-
reference image pairs captured from Amsterdam. Each
pair consists of a grayscale historical image as the query
and a contemporary image from the same place (identified
by human experts) as the reference. The dataset involves
very long-term time spans, and diverse domain variations
in viewpoints, modalities (RGB vs grayscale), etc., which
makes it quite difficult for VPR.

SVOX [6] is a cross-domain VPR dataset collected in
a variety of weather and lighting conditions. It includes
a large-scale database sourced from Google Street View
images spanning the city of Oxford. The queries are ex-
tracted from the Oxford RobotCar dataset [13] and di-
vided into multiple subsets for different weather and light-
ing conditions. We evaluate the model performance us-
ing the three most challenging query subsets: SVOX-Night,
SVOX-Rain, and SVOX-Sun.

K. Compared Methods Details

NetVLAD [3] is a well-known VPR approach with a differ-
entiable VLAD layer, which can be integrated into common
neural networks. In our experiments, we use its PyTorch
implementation1 with the released VGG16 model trained
on Pitts30k for comparison.

SFRS [7] utilizes self-supervised image-to-region simi-
larities to mine hard positive samples for training a more ro-
bust NetVLAD model. In the comparison experiments, we
follow its official implementation2 with the model trained
on the Pitts30k dataset.

Patch-NetVLAD [8] is a two-stage method that utilizes
NetVLAD-based multi-scale patch-level features to re-rank
the candidate images retrieved using NetVLAD global fea-
tures. The official implementation3 with the performance-
focused configuration is used in our experiments. Follow-
ing the original paper, the model trained on the Pitts30k
dataset is tested on Pitts30k and Tokyo24/7, while the model
trained on the MSLS dataset is evaluated on MSLS (-val and
-challenge).

TransVPR [18] is a two-stage VPR method that lever-
ages attentions from three levels of Transformer to pro-
duce global features for candidates retrieval, and employs
an attention mask to filter feature maps to yield key-patch
descriptors for re-ranking candidates. The official imple-
mentation4 is used for comparison experiments. The model
trained on the Pitts30k dataset is evaluated on Pitts30k and
Tokyo24/7, and the model trained on the MSLS dataset is
assessed on MSLS.

CosPlace [4] treats VPR model training as a classifica-
tion problem and trains the model on the individually con-
structed San Francisco eXtra Large (SF-XL) datasets with
the Large Margin Cosine Loss (i.e., cosFace) to achieve re-
markable results. We follow its official implementation5

with the VGG16 backbone (producing 512-dim global fea-
tures) for testing.

GCL [10] uses an automatic annotation strategy produc-
ing graded similarity labels for image pairs to re-label VPR
datasets, and a novel generalized contrastive loss to uti-
lize such labels to train contrastive networks. we use the
results (yield by the version using ResNet152-GeM with
PCA) from the original paper for comparison.

MixVPR [2] introduces a novel holistic feature aggre-
gation approach for global-retrieval-based VPR. It utilizes
feature maps yielded by a pre-trained backbone as initial
feature representations, and employs a sequence of Feature-
Mixer modules to incorporate global relationships into each

1https://github.com/Nanne/pytorch-NetVlad
2https://github.com/yxgeee/OpenIBL
3https://github.com/QVPR/Patch-NetVLAD
4https://github.com/RuotongWANG/TransVPR-model-

implementation
5https://github.com/gmberton/CosPlace

https://github.com/Nanne/pytorch-NetVlad
https://github.com/yxgeee/OpenIBL
https://github.com/QVPR/Patch-NetVLAD
https://github.com/RuotongWANG/TransVPR-model-implementation
https://github.com/RuotongWANG/TransVPR-model-implementation
https://github.com/gmberton/CosPlace


feature map to produce final global features. We follow the
official implementation6 and its best configuration, i.e., us-
ing the ResNet50 backbone producing 4096-dim global fea-
tures, for comparison experiments.

EigenPlaces [5] can be seen as an improvement work on
CosPlace. This work trains the networks on images from
different viewpoints (of the same place), thus improving the
viewpoint robustness of learned global representations. It is
the most recent work and achieves the best performance on
most VPR datasets. We follow its official implementation7

and the configuration using ResNet50 as the backbone to
yield 2048-dim features.

Besides, the results on the three challenging datasets
(Nordland, AmsterTime, and SVOX) are directly referenced
from the EigenPlaces paper [5]. These results are basically
consistent with what we have reproduced.

L. Additional Qualitative Results and Failure
Cases

In the main paper, we have presented a small number of
qualitative results to show the robustness of our approach in
challenging scenarios. In this section, we add more exam-
ples to vividly demonstrate the performance of VPR meth-
ods. Suppl. Fig. 2, Suppl. Fig. 3, and Suppl. Fig. 4 show
examples on Pitts30k, Tokyo24/7, and MSLS-val, respec-
tively. These examples demonstrate that our method is more
robust against variations in conditions and viewpoints, as
well as perceptual aliasing, than previous methods. Suppl.
Fig. 5 and Suppl. Fig. 6 show examples on AmsterTime and
Nordland, which demonstrate that our method can correctly
recognize place images over long time spans and under ex-
treme environments in general. However, our method also
produces erroneous results in a few cases (the last examples
of these two figures) when images from different places are
very similar, especially when lacking discriminative land-
marks.

M. Limitations

In addition to the failure case mentioned in the previous
section, our approach has two limitations. First, although
our approach achieves excellent results with the 512-dim
compact feature on Pitts30k, it does not perform well on
datasets with severe condition changes (e.g., Tokyo247,
MSLS) when the descriptor dimension is reduced to very
low. Secondly, setting the inference batch size to 1 will ren-
der our cross-image encoder ineffective, resulting in a gap
between training and testing, and thus not achieving optimal
performance. These are the focal points for future improve-
ment of our method.

6https://github.com/amaralibey/MixVPR
7https://github.com/gmberton/EigenPlaces
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Supplementary Figure 2. Qualitative results on Pitts30k. The proposed CricaVPR returns the correct database images, while other
methods produce wrong results. In these examples, most of the other methods suffer from perceptual aliasing. In the first two examples, all
other methods return highly similar but wrong places. In the third example, the buildings on the right of the images returned by TransVPR,
CosPlace, and EigenPlaces are highly similar to the building on the right of the query image, indicating that the appearance of this building
is not distinguishable enough, making these methods suffer from perceptual aliasing.
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Supplementary Figure 3. Qualitative results on Tokyo24/7. The proposed CricaVPR returns the correct database images, while other
methods produce wrong results. In these examples, the main challenges are the variations in lighting conditions across day and night, as
well as perceptual aliasing. In the first example, as the query image is a nighttime image, all methods except for ours and EigenPlaces
return nighttime but incorrect images. EigenPlaces returns a similar but incorrect image.
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Supplementary Figure 4. Qualitative results on MSLS-val. The proposed CricaVPR returns the correct database images, while other
methods produce wrong results. In the first example, NetVLAD returns a highly similar but wrong image. In the second example, the
building on the left of the query image is occluded by trees, causing NetVLAD, TransVPR, and CosPlace to return incorrect results with
obvious trees on the left side. In the third example, SFRS, CosPlace, and EigenPlaces return database images that are geographically close
to the query image but exceed the set threshold (i.e. still wrong).
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Supplementary Figure 5. Qualitative results on AmsterTime. There is a very long time span between the query (grayscale) image and
the reference (RGB) image in this dataset. In the first two examples, the proposed CricaVPR returns the right database images, while other
methods produce wrong results. In the first example, the discriminative buildings only occupy a small region of the reference image. In the
second example, a new building appears in the reference image, and the original building has undergone some modifications. These cause
other methods to return incorrect results. In the last example, there are images from different places in the database that are highly similar
to the query image, causing none of the methods to retrieve the correct result.
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Supplementary Figure 6. Qualitative results on Nordland. These examples show drastic variations in conditions (season, weather, and
lighting). Meanwhile, there are almost no discriminative buildings in the images. These challenges are difficult to address for previous
VPR methods, resulting in incorrect results being returned by all of them. Our method gets the right result in the first two examples but
fails in the last one.
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