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Supplementary Material

1. Design of Brown Interaction Capture System
(BRICS)

Aluminum Frame: To capture table-scale scenes, we chose
a refrigerator-sized aluminum frame (Figure 3 (a) of the
main paper) that houses a 1 m? capture volume mounted on
wheels for mobility. Each of the 6 side walls of the capture
volume is composed of a 3x3 grid with dual polycarbonate
panels on each grid square (total of 54 squares). Two of the
walls are doors that allow quick access to the capture volume.
The height of the system allows an average person to easily
reach into the volume for interaction capture. A transparent
polycarbonate shelf in the capture volume allows bottom
cameras to still see objects to provide a 360° view. A shelf
in the bottom houses power supplies, network switches, and
a control workstation.

Sensor/Illumination Panels: For 53 of the 54 grid squares
(we leave one out for easy access) on the side walls, we
installed translucent polycarbonate panels on the interior
consisting of cameras, microphones, and LEDs. Each panel
can support up to 3 RGB cameras, 3 microphones, and a
fully programmable RGB light strip with 72 individual LEDs.
This panel naturally diffuses the LED lights enabling uni-
form lighting of the volume. In our current setup, each of the
53 panels has an LED strip and 1 off-the-shelf RGB camera
capturing at 1280x720 @ 120 FPS. We install microphones
on 6 panels, one on each side wall of the capture cube.
Communication Panels: The sensor panels collectively
generate more than 13.25 GB/s (0.25 GB/s per panel) of
uncompressed data — well beyond the bandwidth of common
wired communication technologies like USB or ethernet. To
enable the capture and storage of such amounts of data, we
built our own communication system. Briefly, this system
consists of single-board computers (SBCs) that connect to
sensors via USB and are responsible for compressing the data
before sending it to a control station over gigabit ethernet.
With this setup, we are able to simultaneously transmit large
amounts of data with low latency.

Control Workstation: We use a workstation with 52 CPU
cores to simultaneously uncompress, store, and transmit all
the data. To ensure high throughput, we use a 10 Gigabit
ethernet uplink to the SBCs, a PCI solid state drive, and
200 GB RAM for caching.

Panels: BRICS panels are designed to be modular, to allow
for quick customization for different research endeavors.
BRICS consists of 42 panels in total across six sides. Each
side has six square panels of size (9.75 in x 9.75 in) and a
single rectangular middle panel of size (32.25 in x 9.75 in)
that can be changed to consist of three square panels based on

research tasks. The panels inside are white translucent panels
made of TAP plastics Satinice White Acrylic to encourage
light dispersion towards the inside. Outer panels are white
and opaque made of TAP plastics KOMATEX foamed PVC
Sheets.

The inner panels allow the mounting of three different

cameras or other accessories. Although the panel currently
consists of an RGB camera of size (71.5 mm x 71.5 mm)
mounted at the center, future plans include attaching depth
and infrared cameras. All panels are 1/8th inch in thickness.
Mounts: We utilize custom-designed mounts to attach cam-
eras to the panels. We use custom-designed ball bearing
mounts, that are rotatable to allow for changing the camera
orientation.
Lighting: We use BTF-Lighting WS2812-B individually
addressable RGB lighting strips. This allows for highly cus-
tomized lighting conditions and environment maps. More-
over, using LED strips allows us to add additional lighting
quickly.

Each panel has 70 LED’s placed in between the inner
panel and outer panel. These LED’s are powered individually
and sequentially connected for data. The LED’s are all
controlled with six Raspberry Pi 3 Model B+ computers, one
for each side. To control the LED’s we used the standard
NeoPixel python library. Furthermore, each side allows for
individual brightness control.

Cameras: We used off-the-shelf USB 2.0 cameras that can
capture 1280x720 @ 120 FPS. Specifically, we used the
ELP-SUSB1080P01-LC1100 from ELP Cameras.

Single Board Computers (SBCs): We need the single
board computers to have enough processing power and USB
ports to support up to 3 cameras and 1 microphone each. For
this reason and easy market availability, we chose the Odroid
N2+ 4 GB, which was sufficient for our purpose.

2. Dynamic Dataset Benchmark Comparison

Pre-processing: To do a benchmark, we pre-process the
raw data captured through BRICS following Section 5.

Baselines Training: Per-Frame I-NGP (PF I-NGP) sequen-
tially learns a model for each time step. Each I-NGP [5] is
initialized from the model of the previous time step. The PF
I-NGP allows us to fit the dynamic video efficiently while
not considering the motion between frames. In addition,
the streamable training feature also allows us to optimize
the camera pose and lens distortion individually for each
frame. We train each I-NGP for 5000 iterations. The average
training time for each I-NGP is 48.7 seconds with a standard
deviation of 4.4 seconds. The smaller standard deviation



Types Baseline PSNRT SSIM+t LPIPS| JOD?1
PFI-NGP [5] 29.62/4.42 095/0.02 0.06/0.02 7.53/1.28
Dynamic objects MixVoxels [6] 28.43/2.87 0.95/0.02 0.06/0.03 7.48/1.31
K-Planes [2] 26.62/4.41 091/0.04 0.21/0.09 6.66/1.47
PF I-NGP 26.89/1.76  0.94/0.03 0.09/0.04 7.68/0.51
Interactions Mix Voxels 2645/191 0.93/0.03 0.10/0.04 7.50/0.70
K-Planes 26.18/2.08 093/0.03 0.17/0.06 7.55/0.49
PF I-NGP 29.35/090 0.93/0.03 0.10/0.03 7.60/0.57
Long-duration Sequences Mix Voxels 29.62/0.75 093/0.02 0.11/0.02 7.87/0.29
K-Planes 26.45/1.86 0.92/0.02 0.21/0.04 7.27/0.68

Table 1. Rendering quality (mean / standard deviation) of dynamic objects, interactions, and long duration sequences respectively using PF
I-NGP[5], MixVoxels.[6], and K-Planes [2]. Although the PSNR of PF I-NGP is much better than MixVoxels in terms of dynamic objects,
the PSNR of PF I-NGP is similar to the Mix Voxels for interactions and even underperforms Mix Voxels for long-duration sequences. This
indicates that it is hard to capture the scene occluded by hands and maintain the temporal consistency, especially for static parts such as the
chessboard, without utilizing the temporal information. Unlike PF I-NGP and MixVoxels, the performance of K-Planes is more consistent

across the three types.

is due to the fact that PF I-NGP does not consider motion.
However, this will lead to temporal inconsistency, which is
especially obvious at static parts when comparing PF I-NGP
with MixVoxels [6] and K-Planes [2]. In Figure 21, we con-
catenate the pixels from the line across frames in the same
view and demonstrate that PF I-NGP contains much white
noise and is less temporal smooth.

MixVoxels [6] is trained to capture the dynamic video
every 150 frames. We train each MixVoxels for 25000 it-
erations. We lower the dynamic threshold to capture more
dynamic samples for scenes with drastic motion. Although
MixVoxels is trained and benchmarked with black back-
grounds, we render it with white backgrounds for all figures
in the paper. This will make the floaters of MixVoxels darker
in the figures. Unlike PF I-NGP, MixVoxels allows us to
learn a dynamic NeRF with motion. In addition, Mix Voxels
trained with multiple frames also encourage temporal consis-
tency (see Figure 21), which is absent in PF I-NGP. However,
MixVoxels struggles to capture dynamic parts with complex
motion and small dynamic objects. Hence, in Figure 17,
we can observe many floaters and noise around the hand
of Chess, and cannot see the small train in the Music Box
and holes of knitted fabric in the Crochet. We assume the
noise and floaters are caused by the insufficient capacity of
the dynamic branch when receiving too many dynamic sam-
ples. The small objects and fine-grained details are missed
because the variation field fails to decompose the scene cor-
rectly. For each time step, the average training time is 57.55
seconds, with a standard deviation of 6.96 seconds. The
large standard deviation is because MixVoxels will sample
more dynamic points for its dynamic branch when learning
a scene with complex motion.

For a fair comparison, we also train a K-Planes every
150 frames. We train each K-Planes for 90000 iterations.
Similar to the MixVoxels, K-Planes is also more tempo-
rally consistent. This is especially obvious in Chess and Put
Fruit of Figure 21. K-Planes sometimes fails to reconstruct
static parts and tends to generate many floaters, especially
for objects with slow motion such as Music Box. Addition-
ally, it misses the fine-grained details of the knitted crochet
in Figure 17. This could be the result of overfitting and
contamination from the dynamic planes due to weaker de-
composition. For each time step, the average training time
is 47.59 seconds with a standard deviation of 5.13 seconds.
Although the training time of K-Planes is faster than PF I-
NGP and MixVoxels without considering standard deviation,
K-Planes shows the slowest rendering speed among them.

Table | separately shows quantitative results of dynamic
objects, interactions, and long-duration sequences. PF I-
NGP, MixVoxels, and K-Planes perform better with dynamic
objects than interactions. One reason is that models trained
on dynamic objects do not need to handle occlusion caused
by the hands. Another reason is that hand motion is more
complex. The PSNR gap of PF I-NGP is 2.73 dB, the
PSNR gap of MixVoxels is 1.98 dB, and the PSNR gap
of K-Planes is 0.44 dB. The performance gap between dy-
namic objects and interactions is more obvious with PF
I-NGP because it does not utilize temporal information and,
therefore, cannot handle occlusion well. A similar situation
happens to PF I-INGP when comparing dynamic objects with
long-duration sequences. However, this situation does not oc-
cur with MixVoxels when comparing dynamic objects with
long-duration sequences, which also capture hand-object
interaction scenes but longer. This is because the scenes



Baseline Motion PSNR?T SSIM?T LPIPS| JOD?T
Slow 29.76/2.18 0.96/0.02 0.05/0.03 7.13/2.57
Fast 30.06/5.15 0.95/0.01 0.06/0.02 7.60/0.60
PF I-NGP [5] Detailed 33.11/7.81 0.96/0.02 0.07/0.03 6.74/2.35
Repetitive 28.76/2.16 0.96/0.02 0.06/0.02 7.75/0.71
Random 31.59/8.95 0.95/0.01 0.07/0.02 6.74/2.34
Slow 29.64/2.14 096/0.02 0.05/0.03 7.58/2.52
Fast 28.39/3.09 095/0.02 0.07/0.02 7.41/0.73
MixVoxels [6]  Detailed 30.25/3.95 0.96/0.02 0.06/0.03 6.59/2.57
Repetitive 28.37/2.35 0.94/0.02 0.09/0.02 6.94/0.72
Random* 27.89/5.75 0.95/0.02 0.07/0.03 5.91/1.99
Slow 25.18/2.05 0.88/0.03 0.31/0.03 6.10/1.03
Fast 26.99/523 092/0.05 0.18/0.09 6.73/1.63
K-Planes [2] Detailed 27.91/8.54 0.88/0.05 0.26/0.10 5.68/1.54
Repetitive 25.43/2.78 0.91/0.05 0.23/0.10 6.47/1.60
Random 30.86/6.02 0.92/0.04 0.19/0.07 6.65/1.38

Table 2. Rendering quality (mean / standard deviation) of dynamic objects using PF I-NGP[5], MixVoxels[6] and K-Planes[2] in terms of
different types of motion. * indicates that the results do not include the Plasma Ball Clip sequence because the codebase cannot handle
that scene. PF I-NGP serves as a baseline without considering temporal information. Compared with PF I-NGP, the PSNR of Mix Voxels
decreases by 0.12 dB, 1.67 dB, 2.86 dB, 0.39 dB, and 3.7 dB for slow, fast, detailed, repetitive, and random motion, respectively. Mix Voxels
perform better on scenes with slow and repetitive motion while worse on scenes with drastic motion. Compared with PF I-NGP, the PSNR
of K-Planes decreases by 4.58 dB, 3.07 dB, 5.2 dB, 3.33 dB, and 0.73 dB for slow, fast, detailed, repetitive, and random motion, respectively.
K-Planes perform better on scenes with fast and random motion while worse on scenes with less drastic motion.

of long-duration sequences often contain a large portion of
static parts, such as the chessboard in the Chess Long (see
Figure 10). MixVoxels can largely benefit from this kind
of sequence because the independent static branch of the
MixVozxels can handle static parts smoothly across frames.
Interestingly, this allows Mix Voxels to outperform PF I-NGP,
which is less temporally smooth across these frames (see
Figure 21). Unlike PF I-NGP and MixVoxels, the perfor-
mance of K-Planes is robust across three types because of
the relatively soft static dynamic decomposition.

Dynamic Object Results: Table 2 shows the performance
of PF I-NGP, Mix Voxels, and K-Planes in different motion
types. We manually classified the 21 dynamic object se-
quences into five overlapping categories: slow, fast, detailed,
repetitive, and random (Table 3). Although PF I-NGP does
not consider motion, it serves as a baseline for dynamic
models by fitting each frame separately.

All baselines perform slightly better on detailed motions.
However, a gap exists between MixVoxels and PF I-NGP’s
quantitative results, suggesting that Mix Voxels can capture
the static background but struggles to capture detailed motion
(e.g. the second hand of the Clock in Figure 3 disappears).
Unlike MixVoxels, K-Planes partially reconstructs the sec-
ond hand but fails to reconstruct the static part well (e.g., the
clock’s body). This leads to a larger performance gap be-

tween K-Planes and PF I-NGP. Slow and repetitive motions
are the two categories that Mix Voxels’ results are the closest
to PF I-NGP’s while the performance gaps are larger in fast
and random motions. In other words, MixVoxels can suc-
cessfully capture dynamic information when the motion is
continuous and gradual but cannot generalize well to drastic
motion. For example, the Horse in Figure 1 and the Penguin
in Figure 4 are clean, while the Blue Car in Figure 2 and the
Wolf in Figure 5 miss fine-grained details or parts. Fast and
random motions are the two categories that K-Planes’ results
are the closest to PF I-NGP’s while the performance gaps
are larger in slow and repetitive motions. In other words,
K-Planes can construct scenes of drastic motion with fewer
artifacts but may produce more artifacts, such as floaters
for mild motion. For instance, the Dog in Figure 2 and the
Wolf in Figure 5 contain fewer floaters and artifacts than
the Horse in Figure 1 and the Stirling Engine in Figure 4.
Together with the quantitative results (Table 4), the visualiza-
tion results suggest that PF I-NGP can successfully capture
most of the scene, whereas Mixvoxels and K-Planes struggle
to generalize to different types of motions and may need
hyperparameter tuning to fit scenes with different motion

types.

Interaction Results: Our interaction scenes, which cover
several human daily activities such as flipping a book in



Scene Slow  Fast

Detailed Repetitive

Random ‘ Size LxW xH (cm)

blue car
bunny
clock
dog
horse
hourglass
k1 double punch
k1 handstand
k1 push up
music box
penguin
plasma ball
plasma ball clip
red car
stirling
tornado
trex
truck
wall-e
wolf
world globe
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33.02 x 27.94 x 19.05
30.48 x 30.48 x 4.57
27.00 x 11.99 x 27.00
11.50 x 7.60 x 13.50
7.00 x 7.00 x 17.00
9.80 x 17.20 x 35.00
9.80 x 17.20 x 35.00
9.80 x 17.20 x 35.00
10.80 x 10.80 x 12.60
24.69 x 27.00 x 13.77
15.00 x 15.00 x 24.10
15.00 x 15.00 x 24.10
22.50 x 9.20 x 5.20
9.00 x 9.00 x 13.00
11.00 x 11.00 x 27.50
30.50 x  7.50 x 20.50
17.80 x 7.10 x 7.30
35.56 x 20.32 x 27.94
17.78 x 12.70 x 35.56
13.97 x 13.97 x 19.81
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Table 3. Motion types and object size (cm) of each dynamic object. Objects are split into 5 overlapping categories: slow, fast, detailed,

repetitive, and random motion.

Figure 7, require the model to capture a sequence of realistic
motions. For example, the Battery scene in Figure 6 contains
the motion of using a screwdriver to open the toy’s battery
cover, putting in the batteries, assembling the cover back,
and turning on the toy. We consider the interaction data as
more challenging cases for neural radiance fields because
of the occlusion and complex motion from the hands. Ta-
ble 5 demonstrates all results of PF I-NGP, Mix Voxels, and
K-Planes on interaction scenes. Overall, the performances
of these three baselines are similar across interaction scenes.
PF I-NGP performs robustly across most of the scenes while
failing to totally reconstruct the cover of the book in Figure 7
and produces scratches on the hand in Figure 8. MixVoxels
reconstructs blurrier texts in Figure 7, and a few floaters
around the hand in Figure 9. K-Planes reconstructs many
floaters around the hand and objects in Figures 6, 8 and 9,
misses the text in Figure 7, distorts the hand in Figure 6, and
produces white scratches on the hand in Figure 8. We hope
that our interaction dynamic dataset can open a new direction
and provide a new understanding for hand object interaction
tasks [1] in the future. Notably, visualization results show
black artifacts in Figure 6 and Figure 9 in MixVoxels ren-
derings. This effect is not observable in numerical results
because all models except K-Planes are trained and evalu-
ated with black backgrounds. We used white backgrounds

for rendering to better visualize the results.

Long duration Results: Although our object and inter-
action datasets contain several long videos, we propose a
long-duration dataset that only includes videos that are at
least 2 minutes long (see Figure 22). Table 6 details the
rendering quality of PF I-NGP, Mix Voxels, and K-Planes on
each scene of the long-duration data. Surprisingly, MixVoxls
outperforms PF I-NGP in many scenes of the dataset. This
is because many scenes of the dataset contain large static
parts such as a chessboard in the Chess Long, and the tray
in the Jenga Long, Legos, Origami, Painting, and Puzzle.
MixVoxels is good at maintaining the consistency of the
static parts across frames, while PF I-NGP cannot (see Fig-
ure 21). Figure 11 demonstrates that PF I-NGP still provides
more fine-grained details, such as the holes of fabrics in Cro-
chet, than MixVoxels and K-Planes. Figure 10 shows that
Mix Voxels performs better at static parts like the chessboard
while K-Planes performs better at dynamic parts such as the
hand.

3. Dynamic Dataset Experiments

In this section, we discuss the visualization results for each
experiment in Section 5.2 of the paper.

Temporal Information: Figure 12 demonstrates the visu-



PF I-NGP / MixVoxels / K-Planes

PF I-NGP / Mix Voxels / K-Planes

PF I-NGP / Mix Voxels / K-Planes

PF I-NGP / MixVoxels / K-Planes

Scene PSNR? SSIMt LPIPS] JOD?}
blue car 29.833/29.485 / 28.304 0.957/0.955 / 0.962 0.047/0.049 / 0.059 7.951/8.097 /8.581
bunny 26.491/24.983 /27.244 0.941/0.928 /0.935 0.085/0.098/0.176 7.905 / 7.407 / 7.790
clock 28.943/28.682/21.972 0.935/0.934/0.868 0.108/0.100/ 0.299 7.810/9.026/ 6.833
dog 25.463/23.233/29.483 0.949 /0.929 / 0.949 0.085/0.100/0.143 7.75416.350 / 8.405
horse 31.869/31.724 / 25.940 0.982/0.980 / 0.878 0.023/0.023/0.333 8.736/8.910/5.816
hourglass 27.244127.468 / 27.559 0.970/0.976 /0.930 0.054/0.027 /0.261 2.572/3.100/7.477
k1 double punch 27.422/27.208 / 23.190 0.938/0.938/0.917 0.070/0.068 / 0.202 6.733/6.421/6.832
k1 handstand 27.631/26.795/23.178 0.936/0.930/ 0.906 0.072/0.078 / 0.180 7.233/7.37715.945
k1 push up 27.393/27.326/22.345 0.936/0.935 / 0.889 0.072/0.072 /0.230 6.886/7.439/5.006
music box 32.225/32.129/24.862 0.980/0.979 /0.871 0.031/0.028/0.329 8.444 /8.636 / 5.004
penguin 27.034/26.675 / 28.504 0.950/0.950 / 0.949 0.074/0.068 / 0.165 8.182/8.291/8.338
plasma ball 33.422/36.102/29.145 0.944 /0.955 / 0.857 0.072/0.060/ 0.273 7.368/6.372/5.048
plasma ball clip 46476/ — /41437 0.968/ — /0.940 0.049/ — /0.108 8.139/ — /5.502
red car 30.844 /30.342 / 28.626 0.961/0.960 / 0.962 0.046 /0.050/0.111 8.020/8.161/8.352
stirling 29.473/28.744/19.415 0.966/0.963 /0.810 0.045/0.037/0.372 7.808/7.868 /3.550
tornado 28.629/28.825 / 24.427 0.965 / 0.966 / 0.886 0.045/0.043 /0.309 6.398/6.815/6.164
trex 28.496 / 28.057 / 24.976 0.948 /0.947 / 0.935 0.056/0.058 /0.148 8.257/8.172/6.266
truck 31.033/30.654 / 30.431 0.969 /0.967 /0.973 0.038/0.044 / 0.064 8.418/8.412/8.849
wall-e 28.164/27.263 / 25.694 0.934/0.923/0.936 0.085/0.114/0.134 7.597/7.399 /7.933
wolf 25.341/24.764 1 26.683 0.940/0.935 /0.932 0.089/0.094 /0.183 7.855/7.810/6.800
world globe 28.529/28.175 / 25.560 0.953/0.955/0.874 0.052/0.047 /0.322 8.063 /8.243/5.372

Table 4. Rendering quality of all dynamic objects using PF I-NGP [5], MixVoxels [6] and K-Planes [2]. PF I-NGP and MixVoxels are
evaluated with black backgrounds. K-Planes is evaluated with white backgrounds.

alization results of MixVoxels and K-Planes when trained
with different numbers of chunks. Notably, more chunks in-
dicate a shorter temporal length per model and less temporal
information. Visualization results of Mix Voxels show less
noise when the number of chunks increases, while K-Planes’
results show the opposite. Hence, the visualization results
support that Mix Voxels prefers a shorter temporal length per
model, while K-Planes prefers a longer temporal length per
model.

Spatial Information: From Figure 13, firstly, we notice that
the spatial interpolation ability of the neural radiance field
is impressive. The visualization of PF I-NGP and Mix Vox-
els are almost the same across three resolutions, but they
start missing fine-grained details, such as the stripes of the
Bunny’s clothes in the lowest resolution setting. This in-
dicates that the performance drop won’t happen if the res-
olution is acceptable for neural radiance fields. Secondly,
we found that the reconstruction results of MixVoxels and
K-Planes do not miss any parts of the object but are similarly
blurry across all three settings. This suggests that current dy-
namic NeRFs may be biased towards capturing the shape of
moving objects, potentially sacrificing the ability to capture
details. Finally, the floaters generated from K-Planes start
disappearing when the resolution gets lower. This is because
K-Planes can revisit the same training samples frequently
under the same training setting.

Spatial and Temporal Information: In Figure 14, the re-
construction results of MixVoxels are blurrier (the hand in
Scissor) and incomplete (the bear’s ears in Horse) on the
lowest resolution and more temporal information settings.
Although the reconstruction results of K-Planes are slightly

blurrier (the hand in Scissor), the reconstructions are com-
plete (the Horse’s head) and have fewer floaters with the
lowest resolution and more temporal information setting.
These match our previous experiment results where we only
control one of these factors at a time.

4. Dataset Justification

In this section, we discuss the visualization results of BRICS
(All-view), BRICS with just two panels (Forward), and
BRICS with fewer cameras (Multi-view) to support that
multi-view 360° setting with enough cameras can lead to the
most completed reconstruction.

Multi-view 360° Capture System: In Figures 15 and 16,
PF I-NGP, MixVoxels, and K-Planes can reconstruct World
Globe and Wolf better with All-view than Multi-view. This
indicates that the number of cameras covering the bounding
space is significant. PF I-NGP, MixVoxels, and K-Planes
can reconstruct World Globe and Wolf better with All-view
and Multi-view than Forward regarding the occluded view.
Hence, 360° setting is necessary to reconstruct the objects
with the correct color completely. Through the visualization
results of Forward, we observe that MixVoxels tends to
render unknown occluded parts with a black background
color, while PF I-NGP and K-Planes show better novel view
synthesis ability for occluded view.

5. Foreground-Background Segmentation
Method

As mentioned in Section 4 of the paper, we use I-NGP for
foreground-background segmentation and compare the I-



Scene

PF I-NGP / Mixvoxels / K-Planes

PF I-NGP / Mixvoxels /K-Planes

PF I-NGP / Mixvoxels / K-Planes

PF I-NGP / Mixvoxels / K-Planes

PSNR? SSIM? LPIPS] JoD?t
battery 26.828 /25.805 / 24.351 0.931/0.902/0.923 0.088/0.128 /0.169 7.48316.729 / 7.404
chess 22.945/20.799 / 22.274 0.821/0.807 /0.865 0.215/0.233/0.267 6.756/5.932/7.691
drum 24.662 /23.784 /22.299 0.903 /0.894 / 0.880 0.136/0.148 /0.253 7.703 1 6.663 /7.199
flip book 26.303 /24.367 1 25.826 0.928/0.904 /0.920 0.120/0.150/0.198 7.34715.750 / 8.093
jenga 29.683 /28.884 /30.992 0.972/0.962/0.973 0.046 /0.063 / 0.087 8.583/8.281/8.284
keyboard mouse 29.635/29.153 / 24.734 0.926/0.926/0.915 0.102/0.101 / 0.204 7.808/7.77716.910
kindle 29.556/28.585/25.796 0.958/0.951/0.943 0.069 /0.087 /0.169 8.237/7.969/6.816
maracas 26.083 /26.300 / 27.352 0.953/0.949 /0.960 0.072/0.081/0.085 7.659/7.575/8.312
pan 27.392/26.759 / 24.803 0.935/0.918/0.937 0.094/0.116/0.153 7.003 /6.996 /7.532
peel apple 27.270/27.205 / 26.108 0.939/0.942 /0.934 0.086/0.089 / 0.184 7.843/7.728/7.595
piano 26.824/26.097 / 23.879 0.929/0.925/0.886 0.104/0.099 / 0.257 7.719/8.438/7.013
poker 27.786/27.736 1 29.137 0.958/0.954 /0.960 0.062 /0.068 / 0.095 8.298/8.143 / 8.409
pour salt 25.845/25.729 / 24.702 0.919/0.919/0.903 0.104/0.111/0.225 7714 717.311/7.622
pour tea 26.071/25.775127.626 0.946 /0.941 /0.950 0.089/0.094 / 0.144 7.44716.951/7.607
put candy 28.189/27.360 / 25.870 0.950 /0.943 /0.940 0.071/0.078 /0.162 7.906/7.836 1 6.737
put fruit 27.129/26.614 / 26.546 0.935/0.931/0.938 0.089/0.097 /0.141 7.815/7.389/7.456
scissor 25.346/25.090 / 25.883 0.944/0.937/0.936 0.076/0.086 / 0.168 7.854/7.563/7.685
slice apple 26.026/25.014 / 26.692 0.951/0.940/0.939 0.106/0.118/0.218 7.829/7.515/7.948
soda 28.780/28.727/27.115 0.964/0.959/0.936 0.059/0.067 / 0.184 8.322/8.091/7.704
tambourine 27.985/27.624 1 27.482 0.972/0.965 /0.968 0.044 /0.049 / 0.100 7.63417.455/7.227
tea 27.410/26.808 / 28.202 0.956 /0.946 / 0.962 0.073 /0.088 / 0.099 7.72317.268 1 7.946
unlock 28.649/29.275 / 29.967 0.971/0.966 / 0.974 0.045/0.058 /0.070 8.158/8.243 /8.441
writing 1 24.086/25.145 / 25.630 0.916/0.926/0.926 0.158/0.163/0.236 6.72517.789/7.222
writing 2 24.345/25.613/25.782 0.930/0.934/0.926 0.146 /0.148 / 0.242 6.490/7.983 / 7.604
xylophone 27.334/26.951 /25.449 0.950/0.948/0.916 0.068 /0.066 / 0.206 7.950/8.103 / 7.094

Table 5. Rendering quality of all dynamic interaction scenes using PF I-NGP[5], Mix Voxels[6] and K-Planes[2]. PF I-NGP and MixVoxels
are evaluated with black backgrounds. K-Planes is evaluated with white backgrounds.

NGP method to the Segment Anything (SAM) [3]. In this
section, we show the strength of the I-NGP segmentation
method and its failure case through visualization.

I-NGP Seg. vs SAM: We show multi-view inconsistencies
of SAM in Figure 18 and Figure 19. Specifically, we can
notice that different views of the same sequence may con-
tain different artifacts, remove certain objects, or miss the
boundary of certain objects. For one time step of the Pour
Salt sequence, one view contains part of the background, one
misses the boundary of the spoon, and one completely re-
moves the spoon. Likewise, in the Replace Battery sequence,
one view misses the boundary of the hand, one completely
removes part of the object, and a few views include the
camera in the background.

Failure Cases: We show failure cases of I-INGP segmen-
tation in Figure 20. Generally, the method misses sections
where the object is very small (e.g. the strand of yarn in the
Crochet sequence), transparent (e.g. the clear water bottle in
the Pour Tea Sequence), highly reflective (e.g. the key in the
Unlock sequence), or white (e.g. the paper in the Writing
sequence). This is likely because the objects are too similar
to the background, making it hard to distinguish between the
two. It is also important to note that the lower arm in Pour
Tea is missed because we shrink the bounding box slightly
smaller than the BRICS machine. This is acceptable because
the lower arm is cropped in the 3D space, so it still maintains
the multi-view consistency, and we focus on the interaction

between objects and hands. This also causes the perfor-
mance of I-NGP segmentation to be underestimated because
we label the whole arms for ground truth. Of course, the
segmentation model in our pipeline can always be replaced
by another much better method in the future.

6. Dynamic Dataset Distribution

In this section, we elaborate on the dataset distribution of
DiVa-360.

Temporal Length: Figure 22 demonstrates the dataset
distribution of all data, object data, interaction data, and
long-duration data. Overall, DiVa-360 contains dynamic
sequences ranging from 5 to 200 seconds. Among them,
37 sequences are 5-29 seconds long, 5 sequences are 30-
59 seconds long, 1 sequence is 60-119 seconds long, and
11 sequences are 120-200 seconds long. Our object and
interaction dataset contains several long sequences longer
than 30 seconds, and our long-duration dataset contains 8
sequences longer than 119 seconds.

7. Other metadata

How can a video play without any audio and captions?
Hence, our sequences are accompanied by audio captured
through microphones and text descriptions labeled by hu-
mans for a better viewing experience. Currently, the audio
and text descriptions are only used for a better immersive



Scene

PF I-NGP / Mixvoxels / K-Plane

PF I-NGP / Mixvoxels /K-Planes

PF I-NGP / Mixvoxels / K-Planes

PF I-NGP / Mixvoxels / K-Planes

PSNR? SSIM? LPIPS] JoD?t
chess long 28.555/29.972/23.216 0.901/0.930/0.885 0.138/0.132/0.251 7.062/7.558 / 6.820
crochet 29.719/ 28.672 1 26.609 0.964 7 0.946 / 0.948 0.065/0.095 / 0.178 8.146 /7.930/ 6.390
jenga long 30.052/30.548 / 29.061 0.928/0.939 / 0.931 0.085/0.083/0.165 8.135/8.435/8.437
legos 27.927/28.436 / 25.342 0.887/0.901 / 0.890 0.132/0.122/0.212 6.514/7.492/6.611
origami 29.694 /30.191 / 28.028 0.93370.936 /0.932 0.095/0.094 / 0.175 7.796 17.955 1 7.740
painting 29.937/30.151 /27.881 0.921/0.933/0.922 0.118/0.112/0.292 7.55717.851/7.316
puzzle 28.463/29.343 / 25.756 0.927/0.942 /0.925 0.115/0.110/0.204 7.536/8.000/7.751
rubiks cube 30.436/29.649 / 25.668 0.969 /0.951 / 0.937 0.064 /0.093 / 0.209 8.024/7.776/7.112

Table 6. Rendering quality of all long-duration scenes using PF I-NGP[5], Mix Voxels[6] and K-Planes[2]. It is surprising that Mix Voxels
outperforms PF I-NGP in most scenes, with the exception of Crochet and Rubik’s Cube. This is because PF I-NGP cannot maintain the
temporal consistency for static parts, such as the large chessboard in the Chess Long scene and tray in Jenga Long, Legos, Origami, Painting,

and Puzzle scenes, while Mix Voxels is good at them.

experience when viewing the sequences. However, we hope
this can be extended to other multimodal NeRFs [4] in the
future.

Audio Data: BRICS can also act as a multimodality capture
system that captures visual and sound data simultaneously.
The object sequences and hand-object interaction sequences
of the dynamic dataset are accompanied by synchronized
spatial audio. The 6 microphones located throughout the
capture system allow for 360°audio which provides both
loud (e.g. microphones located at the top) and more subtle
sounds (e.g. microphones located at the bottom) of the
motion. We do not currently have synchronized audio for
the long-duration dynamic sequences.

Text Description: The object sequences and the hand-object
interaction sequences of the dynamic dataset are accompa-
nied by natural language descriptions at 3 levels of detail.
These descriptions are generated entirely by a human an-
notator without the assistance of any automated tools. The
coarsest level aims to capture a broad summary of the scene
(“putting candy into a mug”), while finer levels increasingly
describe appearance (*“...the pieces are in pink, green, orange,
and black wrappers...”), relative position (*“...candy scattered
around a black mug...”), number of hands, audio, and tem-
poral progression. Across the dynamic scenes, the average
length of the descriptions is 6.1, 18.4, and 38.7 words for
the 3 levels of detail, amounting to a total of 2907 words.
We do not currently have natural language descriptions for
the long-duration dynamic sequences. To prevent the bias of
labeling, we plan to have more people label text descriptions
in the future.

8. Visualization Quality

We encourage readers to download the uncompressed data
from our website for better visualization quality since some
blurriness in images is due to the object’s small size relative
to the image. For instance, the horse is a hand-size object
while the dog is two times larger. This accounts for differ-

ences in observable detail between the sequences. We report
object sizes in the Table. 3.
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Figure 1. Test view reconstruction and ground truth of the two dynamic objects with slow motion: world globe and horse. Top: Although
MixVoxels cannot capture the high-frequency details, the object’s shape is correctly reconstructed. K-Planes cannot capture the high-
frequency details and construct many floaters around the object. Bottom: The rendering results of Mix Voxels are close to the ground truth.
K-Planes still suffers from a bunch of floaters.
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Figure 2. Test view reconstruction and ground truth of two fast motion objects: blue car and dog. Top: The reconstruction results of
MixVoxels and K-Planes are blurry. Bottom: The reconstruction results of Mix Voxels, such as the dog’s tongue, are slightly blurry. K-Planes
looks similar to the ground truth.



Detailed motion
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Hourglass

Figure 3. Test view reconstruction and ground truth of two detailed motion objects: clock and hourglass. Top: MixVoxels captures the
clock’s body accurately but cannot reconstruct the second hand. By contrast, K-Planes struggle for the static part, the clock’s body, but the
second hand is partially reconstructed. Bottom: All baselines cannot reconstruct the hourglass well due to transparency and highly detailed
motion.
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Penguin

Figure 4. Test view reconstruction and ground truth of two objects with repetitive motions: stirling engine and toy penguin. Top: MixVoxels
reconstructs the stirling engine well, while K-Planes fails to capture the rotating part correctly. Bottom: All baselines almost faithfully
capture the toy penguin.
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Figure 5. Test view reconstruction and ground truth of two random motion objects: toy wolf and plasma ball. Top: Both MixVoxels and
K-Planes capture the toy’s motion, but Mix Voxels generates some artifacts and sometimes fails to capture parts of the ear and foot of the
wolf, and K-Planes contains a few floaters in some frames. Bottom: MixVoxels captures the currents in the plasma ball surprisingly well,
while K-Planes and PF I-NGP completely fail. Notably, the plasma ball is captured from a darker environment, so we use the ground truth
mask to turn the background into white color for visually pleasing purposes.



PF I-NGP

MixVoxels

K-Planes

GT

>
>
-
>

Replace battery

Figure 6. Interaction scene showing the motion of replacing a toy Trex’s battery. The sequence contains a series of realistic motions. Both
PF I-NGP and MixVoxels correctly reconstruct the scene. K-Planes distorts the hand in the first column and generates many floaters.
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Flip book

Figure 7. Interaction scene showing the motion of flipping through a book. PF I-NGP generates some artifacts around the bottom of the
book in the second and fourth columns. MixVoxels generates blurry book pages in the third column. K-Planes totally misses the texts in the
third column.
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Figure 8. Interaction scene showing a hand playing a toy piano. Both PF I-NGP and MixVoxels capture the motion successfully, but PF
I-NGP produces some white scratches on the back of the hand. K-Planes produces white scratches on the back of the hand and floaters in the
background.
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Figure 9. Interaction scene showing the process of opening a can of soda. MixVoxels generates a few floaters around the hand in the first
column. K-Planes generates many floaters in the background.
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Figure 10. Long-duration scene showing people playing chess. Both PF I-NGP and MixVoxels can reconstruct the chessboard and chess
well, while K-Planes struggles at these static parts. For dynamic parts, both PF I-NGP and K-Planes can capture the hand clearly, while
MixVoxels cannot.
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Figure 11. Long-duration scene showing a person crocheting. PF I-NGP can capture the holes in the fabrics, while MixVoxels and K-Planes
smooth the fabrics.
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Figure 12. Visualization results of three baselines trained with sequences that split into 12, 6, 3, and 2 chunks. More chunks indicate a
shorter temporal length per model and less temporal information. Mix Voxels is less noise in Replace Battery, and the bear’s eyes in Horse
are more apparent when the amount of chunks increases. Unlike Mix Voxels, K-Planes generates fewer floaters around the object when the
amount of chunks decreases.
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Figure 13. Visualization results of PF I-NGP, MixVoxels, and K-Planes trained with images in different resolutions. * indicates that we
spatially interpolate the rendering results to 1160x550 during testing. The visualization results of PF I-NGP and MixVoxels are similar
across three settings in Horse, but the stripes of the bunny’s clothes are not well reconstructed in 464 <200 (better zoom in to see the details).
The visualization results of K-Planes contain fewer floaters when the resolution decreases.
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Figure 14. Controlling the spatial resolution and amount of chunks simultaneously does not break the property of Mix Voxels and K-Planes.
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Figure 15. The visualization results of PF I-NGP, MixVoxels, and K-Planes trained with World Globe captured from BRICS (All-view), two
panels of BRICS (Forward), and BRICS with fewer cameras (Multi-view). We render the occluded view of Forward to demonstrate that the
Multi-view 360° setting with enough cameras can provide the most comprehensive reconstruction. Both PF I-NGP and K-Planes can render
the occluded view with roughly similar RGB colors, while MixVoxels renders the occluded view with black background color.
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Figure 16. The visualization results of PF I-NGP, MixVoxels, and K-Planes trained with Wolf captured from BRICS (All-view), two panels
of BRICS (Forward), and BRICS with fewer cameras (Multi-view). We render the occluded view of Forward to demonstrate that the
Multi-view 360° setting with enough cameras can provide the most comprehensive reconstruction. Both PF I-NGP and K-Planes can render
the occluded view with roughly similar RGB colors, while MixVoxels renders the occluded view with black background color.
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Figure 17. Failure cases of MixVoxels and K-Planes. MixVoxels constructs many floaters around the hand in Chess, fails to reconstruct the
small train in Music Box, and the holes of knitted fabric in Crochet. Hence, Mix Voxels struggles to capture dynamic parts with complex
motion and fine-grained details. K-Planes misses some static parts of Chess, constructs many floaters around objects, especially for slow
motion objects such as Music Box, and fills the holes of knitted fabric in Crochet. Therefore, K-Planes struggles to capture static parts and
fine-grained details.
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Figure 18. The segmented images of [-NGP and SAM from Pour Salt. SAM cannot maintain multiview consistency, so it contains different
artifacts across views. SAM misses the boundary of the spoon in the first view, removes the whole spoon in the second view, and keeps the
background in the third view.
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Figure 19. The segmented images of -NGP and SAM from Replace Battery. SAM cannot maintain multiview consistency, so it contains
different artifacts across views. SAM misses the boundary of the hand in the first view, keeps the background in the first and second view,
and removes the saddle in the third view.
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Figure 20. Failure cases of [-NGP segmentation. The performance of I-NGP segmentation is less robust with small thin objects (the yarn
in Crochet), transparent objects (the bottle in Pour Tea), high reflection objects (the key in the Unlock), and white objects (the paper in
Writing). A part of the lower arm is cut by the bounding box of [-NGP.
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Figure 21. Visualization of temporal consistency by concatenating a line of pixels across frames from the same view. PF I-NGP contains
white noise in all four objects, so PF I-NGP is less temporal consistent. Although K-Planes’s rendering result is whiter than the ground truth
in Put Fruit, Stirling Engine, and Wolf, the noise is smooth across frames. The rendering result of Mix Voxels is pretty smooth in Chess and
Stirling Engine, but MixVoxels shows black noise on the hand of the Put Fruit and white blocks in Wolf.
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Figure 22. Data distribution in terms of sequence length. Overall, the sequence length of DiVa-360 ranges from 5 to 200 seconds. Both

object and interaction datasets have included several long sequences longer than 10 seconds. Our long-duration dataset provides sequences
that are at least 120 seconds long.
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